ON EXTREMAL PROPERTIES FOR THE POLAR DERIVATIVE OF POLYNOMIALS

K. K. Dewan and Arty Ahuja

(Natural Sciences Jamia Millia Islamia, Central Uniersity, India)

Received June 23, 2010

© Editorial Board of Analysis in Theory & Applications and Springer-Verlag Berlin Heidelberg 2011

Abstract. If p(z) is a polynomial of degree n having all its zeros on $|z| = k, k \le 1$, then it is proved^[5] that

$$\max_{|z|=1} |p'(z)| \le \frac{n}{k^{n-1} + k^n} \max_{|z|=1} |p(z)|.$$

In this paper, we generalize the above inequality by extending it to the polar derivative of a polynomial of the type $p(z) = c_n z^n + \sum_{j=\mu}^n c_{n-j} z^{n-j}$, $1 \le \mu \le n$. We also obtain certain new inequalities concerning the maximum modulus of a polynomial with restricted zeros.

Key words: polynomial, zeros, inequality, polar derivative

AMS (2010) subject classification: 30A10, 30C10, 30C15

1 Introduction

If p(z) is a polynomial of degree n and p'(z) its derivative, then according to a famous result known as Bernstein's inequality (for reference see [2]), we have

$$\max_{|z|=1} |p'(z)| \le n \max_{|z|=1} |p(z)|. \tag{1.1}$$

The result is sharp and the equality in (1.1) holds for $p(z) = \lambda z^n$, where $|\lambda| = 1$.

For the class of polynomials not vanishing in $|z| < k, k \ge 1$, Malik^[8] proved

$$\max_{|z|=1} |p'(z)| \le \frac{n}{1+k} \max_{|z|=1} |p(z)|. \tag{1.2}$$

The result is sharp and the extremal polynomial is $p(z) = (z+k)^n$.

While seeking for an inequality analogous to (1.2) for polynomials not vanishing in |z| < k, $k \le 1$, Govil^[5] proved the following

Theorem A. If $p(z) = \sum_{j=0}^{n} c_j z^j$ is a polynomial of degree n having all its zeros on |z| = k, $k \le 1$, then

$$\max_{|z|=1} |p'(z)| \le \frac{n}{k^{n-1} + k^n} \max_{|z|=1} |p(z)|. \tag{1.3}$$

Let α be a complex number. If p(z) is a polynomial of degree n, then the polar derivative of p(z) with respect to the point α , denoted by $D_{\alpha}p(z)$, is defined by

$$D_{\alpha}p(z) = np(z) + (\alpha - z)p'(z). \tag{1.4}$$

Clearly $D_{\alpha}p(z)$ is a polynomial of degree at most n-1 and it generalizes the ordinary derivative in the sense that

$$\lim_{\alpha \to \infty} \left[\frac{D_{\alpha} p(z)}{\alpha} \right] = p'(z). \tag{1.5}$$

In this paper, we first prove the following result which is an extension of Theorem A due to Govil^[5] to the polar derivative of a polynomial of the type $p(z) = c_n z^n + \sum_{j=u}^n c_{n-j} z^{n-j}$, $1 \le \mu \le n$.

Theorem 1. If $p(z) = c_n z^n + \sum_{j=\mu}^n c_{n-j} z^{n-j}$, $1 \le \mu < n$, is a polynomial of degree n having all its zeros on |z| = k, $k \le 1$, then for every real or complex number α with $|\alpha| \ge k$, we have

$$\max_{|z|=1} |D_{\alpha}p(z)| \le \frac{n(|\alpha| + k^{\mu})}{k^{n-2\mu+1} + k^{n-\mu+1}} \max_{|z|=1} |p(z)|.$$
(1.6)

Instead of proving Theorem 1 we prove the following theorem which gives a better bound over the above theorem. More precisely, we prove.

Theorem 2. If $p(z) = c_n z^n + \sum_{j=\mu}^n c_{n-j} z^{n-j}$, $1 \le \mu < n$, is a polynomial of degree n having all its zeros on |z| = k, $k \le 1$, then for every real or complex number α with $|\alpha| \ge k$, we have

$$\max_{|z|=1} |D_{\alpha}p(z)| \le \frac{n(|\alpha| + S_{\mu})}{k^{n-2\mu+1} + k^{n-\mu+1}} \max_{|z|=1} |p(z)|, \tag{1.7}$$

where

$$S_{\mu} = \frac{n|c_n|k^{2\mu} + \mu|c_{n-\mu}|k^{\mu-1}}{n|c_n|k^{\mu-1} + \mu|c_{n-\mu}|}.$$
 (1.8)

To prove that the bound obtained in the above theorem is better than the bound obtained in Theorem 1, we show that

$$S_{\mu} \le k^{\mu}$$
 or $\frac{n|c_n|k^{2\mu} + \mu|c_{n-\mu}|k^{\mu-1}}{\mu|c_{n-\mu}| + n|c_n|k^{\mu-1}} \le k^{\mu}$