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Abstract. We study the numerical identification of an unknown portion of the bound-
ary on which either the Dirichlet or the Neumann condition is provided from the
knowledge of Cauchy data on the remaining, accessible and known part of the bound-
ary of a two-dimensional domain, for problems governed by Helmholtz-type equa-
tions. This inverse geometric problem is solved using the plane waves method (PWM)
in conjunction with the Tikhonov regularization method. The value for the regulariza-
tion parameter is chosen according to Hansen’s L-curve criterion. The stability, conver-
gence, accuracy and efficiency of the proposed method are investigated by considering
several examples.

AMS subject classifications: 65N35, 65N21, 65N38

Key words: Plane waves method, collocation, inverse problem, regularization.

1 Introduction

The Helmholtz and modified Helmholtz equations are related to various physical ap-
plications in science and engineering. More specifically, these equations are used to de-
scribe the Debye-Hückel equation [15], the scattering of a wave [17], the linearization of
the Boltzmann equation [35], the vibration of a structure [6], the acoustic cavity prob-
lem [12], the radiation wave [19] and the steady-state heat conduction in fins [33]. In
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general, we assume the knowledge of the geometry of the domain of interest, the bound-
ary conditions on the entire boundary of the solution domain and the so-called wave
parameter, κ, and this gives rise to direct/ forward problems for Helmholtz-type equations,
which have been extensively studied both mathematically and numerically, e.g., [24, 34].
When one or more of the above conditions for solving the direct problem associated with
Helmholtz-type equations are partially or entirely unknown, then an inverse problem may
be formulated to determine the unknowns from additional responses.

Traditional numerical methods, in conjunction with an appropriately chosen regular-
ization/stabilization method, have been employed to solve inverse problems associated
with Helmholtz-type equations, such as the finite-difference method (FDM) [4, 5], the fi-
nite element method (FEM) [25, 26] and the boundary element method (BEM) [39, 40],
respectively. Both the FDM and the FEM require the discretization of the domain of in-
terest which is time consuming and tedious, especially for complicated geometries. On
the other hand, while the BEM is a boundary discretization method and hence reduces
the dimensionality of the problem by one, however it requires the evaluation of singular
integrals involving the fundamental solution and its normal derivative and the corre-
sponding BEM matrices are fully populated.

An alternative to these traditional numerical methods are the so-called meshless meth-
ods which have been used extensively in the last two decades for retrieving accurate,
stable and convergent numerical solutions to inverse problems for Helmholtz-type equa-
tions. The advantages of meshless methods are the ease with which they can be imple-
mented, in particular for problems in complex geometries, their low computational cost
and the fact that, in general, they are exempted from integrations that may become cum-
bersome, especially in three dimensions. Such methods include the boundary particle
method (BPM) [13], the singular boundary method (SBM) [14], the method of fundamen-
tal solutions (MFS) [16], the boundary knot method (BKM) [23], Kansa’s method [28],
etc.

The plane waves method (PWM) is a meshless Trefftz method applicable to the so-
lution of boundary value problems governed by the Helmholtz or modified Helmholtz
equation, [1, 2, 44], see also [20, Section 11.1.3]. The PWM has since been applied to the
modified Helmholtz equation in [36], for the calculation of the eigenfrequencies of the
Laplace operator in [3] and for the solution of inverse problems of Cauchy type in [22].
More recently, it was applied to the solution of direct axisymmetric Helmholtz problems
in [29].

The PWM is closely related to another meshless Trefftz method, the method of fun-
damental solutions (MFS) [16] which has in recent years become very popular for the
solution of inverse problems [31,32]. The reason for this popularity is due to the fact that
it is meshless and of boundary type, hence the MFS is easy to implement for problem-
s in complex geometries in two and three dimensions. These properties are shared by
the PWM which was shown to be an asymptotic version of the MFS in [2]. Moreover,
the PWM has a considerable advantage over the MFS as it does not require an external
pseudo-boundary on which the sources are to be placed. The location of this pseudo-


