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Abstract. This article deals with the numerical solution to the magneto-thermo-
elasticity model, which is a system of the third order partial differential equations.
By introducing a new function, the model is transformed into a system of the second
order generalized hyperbolic equations. A priori estimate with the conservation for
the problem is established. Then a three-level finite difference scheme is derived. The
unique solvability, unconditional stability and second-order convergence in L∞-norm
of the difference scheme are proved. One numerical example is presented to demon-
strate the accuracy and efficiency of the proposed method.
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1 Introduction

In the past decades, magneto-thermo-elastic theory has been widely applied in acoustics,
geophysics, micro electromechanical systems (MEMS). There are some reviews about the
classical and generalized theories [1–3]. The generalized thermo-elasticity theories were
considered to be more realistic than the conventional theory in dealing with practical
problems. Some models have been proposed in order to study the property of the ana-
lytical solution by the energy functional and generalized variational principle [4–8]. As
is known to all, it is difficult to find the analytical solution for the generalized model.
Thus, the numerical solutions are usually obtained by the numerical methods such as
finite difference method [9–12], finite element method [13–16] and numerical integration
method [17–19]. It should be mentioned that there are few papers concentrating on the
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analysis of the established numerical methods. This paper deals with the Green-Naghdi
(G-N) model [20] derived by Green and Naghdi [21–23] who provided sufficient basic
modifications in the constitutive equations. The model is written as follows:
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where U=U(ξ,η) and θ = θ(ξ,η) are functions of displacement and temperature, ξ and
η are space variable and time variable respectively. The constants R2

M, εT, cT and κ0 are
dimensionless quantities, where R2

M describes the impact of the external magnetic field
in the process of thermo-elasticity, εT is the thermo-elasticity coupled coefficient, cT is the
wave velocity in G-N model, and κ0 is the thermal diffusion coefficient. When κ0 ≪ c2

T,
Eq. (1.1b) becomes
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which corresponds to the thermo-elasticity undamped heat-wave solution in G-N model.
For emphasizing the main idea, in this article, we consider the model with the simplified
notations in the bounded domain. Then (1.1a) and (1.2) turn into

utt= auxx−vx, 0< x<1, 0< t≤T, (1.3a)

vtt = cvxx−buxtt, 0< x<1, 0< t≤T. (1.3b)

Now taking the derivative with respect to t on both sides of the Eq. (1.3a), we have

uttt= auxxt−vxt, 0< x<1, 0< t≤T.

Let w=ut, then the above equation is equivalent to

wtt= awxx−vxt,

and (1.3b) can be rewritten as
vtt= cvxx−bwxt.

In the following we consider the numerical solution of initial boundary value problem
for the coupled system:

wtt= awxx−vxt+g1(x,t), 0< x<1, 0< t≤T, (1.4a)

vtt = cvxx−bwxt+g2(x,t), 0< x<1, 0< t≤T, (1.4b)

w(x,0)=φ1(x), wt(x,0)=φ2(x), 0≤ x≤1, (1.4c)

v(x,0)=ψ1(x), vt(x,0)=ψ2(x), 0≤ x≤1, (1.4d)

w(0,t)=α1(t), w(1,t)=α2(t), 0< t≤T, (1.4e)

v(0,t)=β1(t), v(1,t)=β2(t), 0< t≤T, (1.4f)


