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Abstract. This article addresses the resolution of the inverse problem for the parame-
ter identification in orthotropic materials with a number of measurements merely on
the boundaries. The inverse problem is formulated as an optimization problem of
a residual functional which evaluates the differences between the experimental and
predicted displacements. The singular boundary method, an integration-free, math-
ematically simple and boundary-only meshless method, is employed to numerically
determine the predicted displacements. The residual functional is minimized by the
Levenberg-Marquardt method. Three numerical examples are carried out to illustrate
the robustness, efficiency, and accuracy of the proposed scheme. In addition, differen-
t levels of noise are added into the boundary conditions to verify the stability of the
present methodology.
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1 Introduction

Elastic constants are routinely obtained from laboratory tests on the specimens with a
well-defined standardized geometry and loading. A uniaxial stress test is used to identify
one or two material properties. Thus for orthotropic materials, such as wood, many
crystals, and rolled metals, more mechanical tests along the orthogonal principal axes of
the material are required to determine all the mechanical properties. Moreover, in some
cases the mechanical property of materials may be changed due to the manufacturing
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conditions, and the test samples are not available [1–3]. As a consequence, the mixed
numerical-experimental techniques are developed.

Thanks to the development of experimental devices and numerical methodologies in
the past decades, the mixed numerical-experimental techniques have been successfully
applied in the parameter identification problem [4–6]. Mixed numerical-experimental
techniques, namely inverse methods, are based on static loading experiments, optimiza-
tion techniques, full-field measurement techniques, and numerical modeling. The aim of
the inverse methods is to identify the mechanical properties with a reduced experimental
set-up. The advantage of the inverse methods lies in that non-standardized specimen ge-
ometries as well as more complicated boundary conditions and material models can be
taken into consideration. For these reasons, the inverse methods are attractive to extract
constitutive parameters from the stress/strain/displacement fields, either for composites
or for other materials [7–9].

Quite a few numerical techniques are developed to solve the parameter identification
problems, such as the constitutive equation gap method (CEGM) [10, 11], finite elemen-
t method (FEM) [12–15], virtual fields method (VFM) [16–19], and boundary element
method (BEM) [3, 20–22]. The basic idea of the VFM is to apply the principle of virtual
work to the tested specimen with some explicit and independent virtual displacemen-
t fields. Each virtual field provides a linear equation based on the principle of virtual
work and finally leads to a linear system to directly determine the unknown parameter-
s. However, the specimen geometry must be defined to balance the influences of each
unknown parameter and a set of available virtual fields leading to a well-conditioned
system are required in the VFM. In the other methods, the parameter identification prob-
lem is formulated as an optimization problem of a least square residual functional which
evaluates the differences between the experimental and predicted displacements. The
numerical methods are only involved in the solution of the direct problems to obtain the
predicted displacements with estimated parameters. The least square residual function-
al is minimized by an optimization method, i.e., Levenberg-Marquardt method in this
study.

Among the numerical methods, the FEM requires mesh generation and re-meshing
which is computationally expensive and sometimes mathematically troublesome, espe-
cially for the complex specimen. In addition, the FEM encounters the difficulties of rais-
ing the regularity of the approximation. The CEGM stems from a more general approach
developed for updating FEM models from assessing quality of FEM meshes or vibra-
tion data. Up to now, another three techniques based on FEM models have been widely
employed: the reciprocity gap method [23], the equilibrium gap method [24, 25], and
multistep reciprocity gap function method [26]. A good survey of these techniques can
be found in [27] with a focus on noisy data in [28]. By contrast, the BEM requires only
meshing on the boundary. But nevertheless the BEM involves sophisticated mathematics
and numerical integrations due to singular fundamental solutions. To avoid these dif-
ficulties, the method of fundamental solutions (MFS) [29, 30] approximates the solution
with a linear combination of fundamental solutions with respect to the source points in


