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Abstract. In this paper, a high-accuracy H1-Galerkin mixed finite element method (M-
FEM) for strongly damped wave equation is studied by linear triangular finite elemen-
t. By constructing a suitable extrapolation scheme, the convergence rates can be im-
proved from O(h) to O(h3) both for the original variable u in H1(Ω) norm and for
the actual stress variable p=∇ut in H(div;Ω) norm, respectively. Finally, numerical
results are presented to confirm the validity of the theoretical analysis and excellent
performance of the proposed method.
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1 Introduction

Consider the following strongly damped wave equation [17]:
utt−∇·(∇utt+∇ut+∇u)= f (x,y,t), (x,y,t)∈Ω× J,
u(x,y,t)=0, (x,y,t)∈∂Ω× J,
u(x,y,0)= g(x,y), ut(x,y,0)=h(x,y), (x,y)∈Ω,

(1.1)

where Ω is a bounded polygonal domain in R2 with Lipschitz continuous boundary
∂Ω, J = (0,T], 0 < T < ∞. ∇ and ∇· represent the gradient and divergence operators,
respectively. g(x,y), h(x,y) and f (x,y,t) are given smooth functions.
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As we know, H1-Galerkin MFEM was firstly proposed in [20] for solving parabolic
problem. It has the same convergence rates as the standard MFEMs, but without the
requirement of LBB consistency condition and quasi-uniformity requirement on the sub-
division meshes, which allow the approximation spaces to be chosen freely. Recently,
there are some extensive studies on H1-Galerkin MFEMs for parabolic partial integro-
differential equation [21], second order hyperbolic equation [22], nonlinear parabolic e-
quation in porous medium flow [2], pressure equation in compressible porous medium
flow [3], pseudo-hyperbolic equation [18], and Sobolev equation [26], etc.

As for the strongly damped wave equation (1.1), the optimal order error estimates of
H1-Galerkin MFEM were investigated in [17]. Recently, though there are many excellen-
t work on superconvergence analysis of MFEMs [4, 5, 13, 16], there are not much work
devoted to the development of superconvergence analysis of H1-Galerkin MFEM. Via in-
tegral equalities techniques and a postprocessing technique, in [32] and [31], Tripathy and
Sinha derived superconvergence estimates of H1-Galerkin MFEM by using rectangular
Raviart-Thomas finite element for elliptic equation and parabolic problem, respectively.
Later, [28,30] studied superconvergence of H1-Galerkin MFEM by the linear triangular fi-
nite element and nonconforming quasi-Wilson finite element, respectively, and improved
the approximation accuracy from O(h) to O(h2) both for u in H1(Ω) norm and the actual
stress variable p=∇ut in H(div;Ω) norm.

On the other hand, Richardson extrapolation is often used to increase the conver-
gence rate of numerical solution by combining the two numerical solutions obtained on
different meshes. Practical application of this approach to FEM can be found in [8,11,12].
As to MFEM, [6, 9, 15] gave the asymptotic error expansions of the lowest rectangular
Raviart-Thomas finite element so as to improve the approximation accuracy in L2(Ω)
norm for second order elliptic problem, parabolic type integro-differential equation and
eigenvalue problem with integral identities and Richardson extrapolation techniques.
Moreover, [33] studied the extrapolation of the Nédélec finite element for Maxwell e-
quation. [35] also investigated the asymptotic error expansions for the Stokes eigenvalue
problem by Bernadi-Raugel finite element.

However, to our best knowledge, there are few reports on the study of extrapolations
of H1-Galerkin MFEM except for our early work [25]. In this paper, as an extension
of [25], we first establish asymptotic expansions for the error between the H1-Galerkin
MFE solution and the corresponding interpolation function of the exact solution with
linear triangular finite element. Furthermore, through constructing the suitable auxiliary
problem and extrapolation scheme, the convergence rates are improved from O(h) to
O(h3) both for u in H1(Ω) norm and p in H(div;Ω) norm.

The remainder of this paper is organized as follows. In Section 2, we describe the
approximate subspace and the H1-Galerkin MFE variational form for problem (1.1), and
introduce some lemmas on the asymptotic expansions for the interpolation of linear tri-
angular finite element. Section 3 is devoted to study the asymptotic expansions of the
error between the H1-Galerkin MFE solution and the interpolation of the exact solution,
and improve the convergence rates by the Richardson extrapolation. In Section 4, some


