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Abstract. In this paper, a meshless regularization method of fundamental solutions is
proposed for a two-dimensional, two-phase linear inverse Stefan problem. The numer-
ical implementation and analysis are challenging since one needs to handle composite
materials in higher dimensions. Furthermore, the inverse Stefan problem is ill-posed
since small errors in the input data cause large errors in the desired output solution.
Therefore, regularization is necessary in order to obtain a stable solution. Numerical
results for several benchmark test examples are presented and discussed.
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1 Introduction

Heat conduction Stefan problems with phase change in multiple dimensions are of im-
portance in several industrial applications in continuous casting of steel, welding pro-
cesses, crystal and biofilm growth, etc. The classical direct Stefan problem which requires
determining both the temperature and the free boundary can become tedious and com-
plicated in the case of multi-dimensional multi-phase models. This fact has motivated
researchers to consider inverse Stefan problems in which the free boundary is known
and the boundary and/or initial data are unknown [4, 6]. This inverse problem which
has application in the technology of refining a material by means of recrystalisation [16],
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is difficult to solve since, as a non-characteristic Cauchy problem, it is ill-posed [2, 4, 9].
Although there exists an extensive literature on one-phase one- and two-dimensional in-
verse Stefan problems, the two-dimensional two-phase case has been considerably less
examined. Prior to this study, [1] regularized such an inverse and ill-posed problem by
means of a convolution equation, but the domain considered in their paper is infinite.
In this paper, we develop a meshless regularized numerical method of fundamental so-
lutions (MFS) for solving a two-dimensional two-phase linear inverse Stefan problem.
In doing so, we extend the recent meshless method of fundamental solutions proposed
in [11, 13] for the one-dimensional two-phase and two-dimensional one-phase inverse
linear Stefan problems, respectively, to the two-dimensional two-phase change case. Fur-
ther applications of the MFS to inverse problems can be found in the survey paper [14].

2 Mathematical formulation

In this section, we extend some of the notation and mathematical setup of [5] from the
one-phase to the two-phase situation. Let l > 0, T > 0 and for t∈ [0,T] define the liquid
(water) zone

Ω1(t)={(x,y)∈R
2| 0< x< s(y,t), 0<y<1},

and the solid (ice) zone

Ω2(t)={(x,y)∈R
2| s(y,t)< x< l, 0<y<1},

where the liquid-solid interface s(y,t)∈(0,l) is known and given. The boundaries ∂Ωi(t)=
Γi(t)∪Σ(t), where

Σ(t)={(x,y)∈R
2| x= s(y,t), 0<y<1}

and Γi(t)=∂Ωi(t)\Σ(t), for i=1,2. Denote also Ω(t)=Ω1(t)∪Σ(t)∪Ω2(t), so that ∂Ω(t)=
Γ1(t)∪Γ2(t). The whole solution domain of each piece of the composite bi-material, for
i = 1,2, are denoted by Ωi =

⋃

t∈(0,T]Ωi(t), and we observe that the boundary ∂Ωi of Ωi

consists of the ”bottom”

Ω1(0)={(x,y)∈R
2| 0≤ x≤ s(y,0), 0≤y≤1},

Ω2(0)={(x,y)∈R
2| s(y,0)≤ x≤ l, 0≤y≤1},

the ”top”

Ω1(T)={(x,y)∈R
2| 0≤ x≤ s(y,T), 0≤y≤1},

Ω2(T)={(x,y)∈R
2| s(y,T)≤ x≤ l, 0≤y≤1},

the interface boundary Σ=
⋃

t∈(0,T)Σ(t), and the ”fixed” boundary Γi =
⋃

t∈(0,T)Γi(t). We
assume that the interface s∈ (0,l) is a known and sufficiently smooth function.


