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Abstract. Kernel-based methods are popular in computer graphics, machine learning,
and statistics, among other fields; because they do not require meshing of the domain
under consideration, higher dimensions and complicated domains can be managed
with reasonable effort. Traditionally, the high order of accuracy associated with these
methods has been tempered by ill-conditioning, which arises when highly smooth ker-
nels are used to conduct the approximation. Recent advances in representing Gaus-
sians using eigenfunctions have proven successful at avoiding this destabilization in
scattered data approximation problems. This paper will extend these techniques to
the solution of boundary value problems using collocation. The method of particular
solutions will also be considered for elliptic problems, using Gaussian eigenfunctions
to stably produce an approximate particular solution.
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1 Introduction

Kernel-based meshfree approximation methods have gained popularity in several fields,
including scattered data interpolation [52], finance [25], statistics [49], machine learn-
ing [43] and others. One of the great benefits of using these methods is that no discretiza-
tion of the relevant domain is required; basis functions are centered at various points
throughout the domain, allowing for kernel-based methods to circumvent some of the
barriers associated with higher dimensional problems. Additionally, a variety of kernels
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exist, providing users in each application the ability to tailor the solution basis to fit that
application’s specific opportunities and constraints.

Techniques for solving boundary value problems (BVPs) with radial basis functions
(RBFs) have advanced significantly in the past two decades. The original method for
solving elliptic partial differential equations (PDEs) with RBFs came in 1990 [31] and
involved an unsymmetric collocation of basis functions at points chosen throughout the
domain. Since that initial work, further analysis has been done on the convergence of
this collocation method [46], which has encouraged its use despite its theoretic potential
for failure [26]. A symmetric collocation technique was also developed [9] which ensured
invertibility of the collocation system by using a modified set of basis functions.

Another popular method for solving BVP with radial basis functions is the method
of fundamental solutions [8]. Essentially, this method replaces the BVP with an inter-
polation problem on the boundary using functions which satisfy the PDE. The mathe-
matical formulation of this method is well-developed, but it is only applicable for homo-
geneous problems where the fundamental solution is known. The method of particular
solutions [5] is an adaptation for inhomogeneous problems involving two approxima-
tion systems: one to satisfy the inhomogeneity in the interior, and another to satisfy the
boundary conditions, assuming a now homogeneous problem. The use of radial basis
functions to approximate particular solutions was discussed in [21, 27].

One of the great shortcomings of radial basis functions is that, for some parameteriza-
tions, the resulting linear system may be irrevocably ill-conditioned [10]. Even more trou-
blesome is the fact that the most accurate parameterizations may lie in the ill-conditioned
regime [19]. This ill-conditioning is especially significant for kernels with a great deal of
smoothness, which often tempers the optimism of researchers hoping to exploit their
spectral accuracy. In [11], this problem was addressed for Gaussians in R

d by using a
truncated eigenfunction expansion of the Gaussian. Here, we will extend the approxima-
tion via eigenfunctions to the solution of boundary value problems.

Many more methods for solving boundary value problems with kernels exist beyond
what will be discussed in this paper. Multilevel methods [30, 36] have been presented,
including for higher order problems [1], to attempt to mitigate the cost associated with
solving dense systems generated by globally supported RBFs. Finite difference schemes
based on RBFs [13, 14] have proven to be an effective meshfree solver for geological and
climate based problems. Partition of unity methods [34] are being developed now to
incorporate RBF collocation with other solution schemes for applications including crack
propagation. Petrov-Galerkin techniques [2] have been developed to allow the weak
form solution of PDEs, while recent work [47] has provided analytic support for this
approach. Some work has been done incorporating RBFs into discontinuous Galerkin
schemes [44]. Kernel based PDE solvers on manifolds [20] are beginning to mature as
well.

To narrow our focus from all possible BVP solvers using kernels, we will discuss only
collocation and the method of particular solutions. In Section 2 we consider the solution
of boundary value problems by collocation with traditional Gaussian RBFs, and demon-


