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Abstract. In this paper, the time-dependent Maxwell’s equations used to modeling
wave propagation in dispersive lossy bi-isotropic media are investigated. Existence
and uniqueness of the modeling equations are proved. Two fully discrete finite ele-
ment schemes are proposed, and their practical implementation and stability are dis-
cussed.
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1 Introduction

The research on numerical analysis and modeling of electromagnetic wave propagation
in dispersive media (especially metamaterials) has been a subject of increasing interest
over the recent years (cf. [1,6,10–14,16,19–21] and references cited therein). In this paper,
we consider the wave propagation problem in dispersive lossy bi-isotropic (BI) media,
which are characterized by more complicated constitutive relations than those classical
dispersive media models such as Debye and Lorentz models [10]. In BI media, the mag-
netic and electric fields are coupled. Electromagnetic waves in such media have some
interesting characteristics such as optical rotatory dispersion [15].
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Though some FDTD schemes (cf. [7]) have been developed for solving BI media, to
our best knowledge, there is no rigorous mathematical analysis (such as the existence and
uniqueness) of this model. Furthermore, to overcome the disadvantage of FDTD schemes
for complex geometric problems, it is interesting to develop some finite element method
for modeling wave propagation in BI media. Our major goal of this paper is to initiate
the analysis of these new modeling equations and develop some efficient finite element
methods to solve them.

In this paper, we denote C (sometimes with a sub-index) a generic constant inde-
pendent of the mesh size h and the time step size ∆t. We also use some common nota-
tions [17]:

H(div;Ω)=
{

v∈ (L2(Ω))3 : ∇·v∈ (L2(Ω))3
}

,

H(curl;Ω)=
{

v∈ (L2(Ω))3 : ∇×v∈ (L2(Ω))3
}

,

H0(curl;Ω)=
{

v∈H(curl;Ω) : n×v=0 on ∂Ω
}

,

for any bounded Lipschitz polyhedral domain Ω in R3 with connected boundary ∂Ω.
Moreover, we let (Hα(Ω))3 be the standard Sobolev space equipped with norm ‖·‖α .
When α=0, we just denote ‖·‖0 for the (L2(Ω))3 norm.

The rest of the paper is organized as follows. In Section 2, we first present the time-
dependent governing equations for modeling wave propagation in BI media. Then we
prove the existence and uniqueness of the modeling equations. We also present a stability
result. In Section 3, we develop two fully-discrete finite element schemes for solving the
BI media model equations. Solvability, stability of these schemes are discussed. Finally,
we conclude the paper in Section 4.

2 The governing equations

The description of the dispersive lossy BI media is given by the constitutive relations [15]:

D=ǫ(ω)E+
√

ǫ0µ0(χ−iκ(ω))H , (2.1a)

B=µ(ω)H+
√

ǫ0µ0(χ+iκ(ω))E, (2.1b)

where E and H denote the electric field and magnetic field, D and B denote the elec-
tric and magnetic flux densities respectively, ǫ0 and µ0 are the vacuum permittivity and
permeability respectively, the number i =

√
−1, χ ≥ 0 is the nonreciprocity parameter,

and κ(ω) is the chirality parameter. Furthermore, the permittivity ǫ(ω) and permeability
µ(ω) depend on the wave frequency ω. Experiments found that a Condon model can
be used to describe the frequency of the chirality κ(ω), and both ǫ(ω) and µ(ω) follow
a second-order Lorentz model. Since the resonance frequencies of κ(ω), ǫ(ω) and µ(ω)
are found to be very close in experiments, in practice they are assumed to be the same,
in which case, the frequency domain constitutive relations (2.1a)-(2.1b) are expressed as


