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Abstract. Finite difference computations that involve spatial adaptation commonly
employ an equidistribution principle. In these cases, a new mesh is constructed such
that a given monitor function is equidistributed in some sense. Typical choices of the
monitor function involve the solution or one of its many derivatives. This straightfor-
ward concept has proven to be extremely effective and practical. However, selections
of core monitoring functions are often challenging and crucial to the computational
success. This paper concerns six different designs of the monitoring function that tar-
gets a highly nonlinear partial differential equation that exhibits both quenching-type
and degeneracy singularities. While the first four monitoring strategies are within the
so-called primitive regime, the rest belong to a later category of the modified type, which
requires the priori knowledge of certain important quenching solution characteristics.
Simulated examples are given to illustrate our study and conclusions.
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1 Introduction

Temporal and spatial adaptations have been playing an important role for computing the
numerical solution of singular or near singular differential equations. Commonly, adap-
tations stem from the equidistribution of a particular monitor function [3]. For singular
problems, the appropriate choice of a monitor function is not clear, as say for blow-up
problems where the monitor function is chosen to minimize the local truncation error.
Still the ultimate goal of the employed strategy is to optimize discretization steps for
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matching key physical properties of solutions, or easing the domain geometric sophis-
tication. Adaptive mechanisms are often achieved through monitoring closely the most
sensitive features of the multi-physical system anticipated, such as the velocity of fluids,
location of wave fronts, and evidence of potential singularities. In this paper, through a
frequently used two-dimensional reaction-diffusion equation of the quenching type, we
discuss several effective adaptation designs. The exploration brings to the surface subtle
issues in quenching computations and offers a cautionary reminder that a particularly
tailored adaptation must be carefully screened prior to employment.

Let Ω be an open unit square. A typical two-dimensional degenerate quenching
model can be comprised as

φ(x,y)ut=αuxx+βuyy+ f (u), (x,y)∈Ω, t>0, (1.1a)

u(x,y,t)=0, (x,y)∈Γ, t>0, (1.1b)

u(x,y,0)=u0(x,y), (x,y)∈Ω, (1.1c)

where Γ is the boundary of Ω, α≥β>0 are constants, and φ(x,y)=φ(y,x)>0, (x,y)∈Ω.
A degeneracy occurs if φ diminishes at certain points on Γ. The source term f is highly
nonlinear, positive, and approaches infinity as u → 1−. We adopt the standard nomen-
clature for quenching, first proposed by [7], that is, the solution u is said to quench if the
time derivative ut becomes unbounded in finite time. That time is called the quenching
time. As discussed in [1, 5], a single point quenching singularity of (1.1a)-(1.1c), if occurs,
must locate on the line segment of y= x, 0< x < 1. An interesting nuance of higher di-
mensional quenching problems is that depending on the size and shape of the domain
the solution may or may not quench. Calculating critical quenching domains and times
has been a primary focus of numerical and theoretical analysis [1, 4–6, 8, 11, 12, 14–17].
The numerical approaches have contained a mix of uniform and nonuniform grids often
employing temporal adaptation solely. It still remains to be seen how to best adapt the
spatial grid to improve on the overall numerical accuracy, efficiency, and robustness, let
alone the effects of such adaptations on the computation itself.

In quenching phenomena, it has been shown that if a solution quenches at a finite
value, then the rate of change function, that is, the temporal or spatial derivative, blows
up faster than an exponential rate [5, 13]. This leads to the following procedure for tem-
poral adaptation based on the equidistribution of ut. We adopt the implicit equation for
a new time step in each advancement,
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where uk, uk+1 are numerical solutions at temporal levels k and k+1, respectively, and
ej ∈ R

N is the jth unit vector, 1 ≤ j ≤ N. The notation (u)p means that each of the vec-
tor’s components is raised to the power p, and the initial step τ0 is given. The updated
temporal step τk is taken to be the minimum, that is,
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