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Abstract. This paper deals with the two-level Newton iteration method based on the
pressure projection stabilized finite element approximation to solve the numerical so-
lution of the Navier-Stokes type variational inequality problem. We solve a small
Navier-Stokes problem on the coarse mesh with mesh size H and solve a large lin-
earized Navier-Stokes problem on the fine mesh with mesh size h. The error estimates
derived show that if we choose h=O(|logh|1/2H3), then the two-level method we pro-
vide has the same H1 and L2 convergence orders of the velocity and the pressure as
the one-level stabilized method. However, the L2 convergence order of the velocity is
not consistent with that of one-level stabilized method. Finally, we give the numerical
results to support the theoretical analysis.
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1 Introduction

In this paper, we deal with the steady Navier-Stokes equations:

{
−µ∆u+(u·∇)u+∇p= f , in Ω,

divu=0, in Ω,
(1.1)

where Ω⊂R
2 is a bounded and convex domain. µ> 0 denotes the kinetic viscous coef-

ficient, u and p denote the velocity and the pressure, respectively. f denotes the external
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body force. divu=0 implies that the fluid is incompressible. We suppose that the bound-
ary ∂Ω of Ω is composed of two parts Γ and S which satisfy meas(Γ) 6= 0, meas(S) 6= 0,
Γ∩S=∅, Γ∪S=∂Ω. Unlike the usual whole Dirichlet boundary conditions, we consider
the following the nonlinear slip boundary conditions of friction type:

{
u=0, on Γ,

un =0, −στ(u)∈ g∂|uτ |, on S,
(1.2)

where g ≥ 0 is a scalar function. un = u·n and uτ = u·τ are the normal and tangential
components of the velocity, where n and τ stand for the unit vector of the external normal
and the tangential vector to S. στ(u)=σ·τ, independent of p, is the tangential components
of the stress vector σ defined by σi =σi(u,p)= (µeij(u)−pδij)nj, where eij(u)= ∂ui/∂xj+

∂uj/∂xi, i, j=1,2. The set ∂|uτ | denotes a subdifferential of the absolute value function at
the point uτ, which is defined by

∂|uτ |=
{

b∈R : |h|−|uτ |≥b·(h−uτ), ∀ h∈R
}

.

The Navier-Stokes equations with nonlinear slip boundary conditions of friction type
is firstly introduced by Fujita in [1] and appears in the modeling of blood flow in a vein
of an arterial sclerosis patient. There have some theoretical results, especially for the
well-posedness analysis of the Stokes problem. We refer to Fujita [2–4], Saito [5], Li [6]
and the references cited therein. Some scholars have focused on the numerical methods.
For example, Suito and his collaborates have applied the boundary conditions (1.2) to
some flow phenomena by the finite difference methods in [7–9], such as the oil flow over
or beneath sand layers and the blood flow in the thoracic aorta. Ayadi and his collab-
orates in [10] studied the finite element approximation for the Stokes problem, where
they use the P1b−P1 element and derived the error estimates in virtue of the Lagrange
multiplier method. Kwshiwabara in [11] used the Taylor-Hood element and obtained
the optimal error estimates for the Stokes problem. Recently, we in [12] applied the pres-
sure projection stabilized finite element method to the steady Navier-Stokes problem and
constructed the simple and the Oseen two-level iteration schemes. We showed that if the
coarse mesh size H and the fine mesh size h satisfy h=O(H2), then the error estimates in-
dicate the simple or Oseen two-level methods will provide the same order of the approxi-
mation as the usual one-level stabilized finite element method [13]. Much research works
have been done about the finite element analysis the variational inequality problems as-
sociated with the Navier-Stokes equations. We refer to the following works [14–16] and
the references cited therein.

In this paper, based on the Newton iteration scheme [17–19], we continue to study the
two-level finite element methods for the Navier-Stokes equations with the boundary con-
ditions (1.2). The main idea is solving a small Navier-Stokes type variational inequality
problem on the coarse mesh with mesh size H and solving a large linearized Navier-
Stokes type variational inequality problem on the fine mesh with mesh size h in virtue


