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Abstract. In this paper, we analyse the convergence rates of several different predictor-
corrector iterations for computing the minimal positive solution of the nonsymmetric
algebraic Riccati equation arising in transport theory. We have shown theoretically
that the new predictor-corrector iteration given in [Numer. Linear Algebra Appl., 21
(2014), pp. 761–780] will converge no faster than the simple predictor-corrector iter-
ation and the nonlinear block Jacobi predictor-corrector iteration. Moreover the last
two have the same asymptotic convergence rate with the nonlinear block Gauss-Seidel
iteration given in [SIAM J. Sci. Comput., 30 (2008), pp. 804–818]. Preliminary numer-
ical experiments have been reported for the validation of the developed comparison
theory.
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1 Introduction

We consider the nonsymmetric algebraic Riccati equation (NARE) arising in transport
theory [10–12]

R(X)=XCX−AX−XD+B=0, (1.1)

where coefficient matrices are of forms

A=∆−eqT , B= eeT , C=qqT, D=Γ−qeT ,
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with

e=(1,1,··· ,1)T, q=(q1,q2,··· ,qn)
T, qi=

ci

2ωi
,

∆=Diag(δ1,δ2,··· ,δn), Γ=Diag(γ1,γ2,··· ,γn),

δi=
1

cωi(1+α)
, γi=

1

cωi(1−α)
, i=1,2,··· ,n,

and α∈ [0,1), c∈ (0,1]. The two parameter sets {ωi}
n
i=1 and {ci}

n
i=1 denote the nodes and

weights, respectively, of the Gauss-Legendre formula satisfying

0<ωn< ···<ω1<1,
n

∑
i=1

ci =1, ci >0.

The minimal positive solution of the NARE (1.1) is of great interest in physics. The
existence of the minimal positive solution has been well studied in [10, 12]. It is shown
in [14] that the minimal positive solution X∗ of (1.1) has the form

X∗=T◦(u∗(v∗)T).

Here the symbol ”◦” is the Hadamard product, T=(tij) with tij =
1

δi+γj
and (u∗,v∗) is the

minimal positive solution of the vector equations

{
u=u◦(Pv)+e,
v=v◦(Qu)+e,

(1.2)

where P and Q are n×n positive matrices with their respective (i, j) element

pij =
qj

δi+γj
and qij =

qj

δj+γi
.

Let A, B be n×n real matrices, throughout this paper we write A> B (or A≥ B) by
meaning that all elements in A are greater than (or greater than and equal to) those in B.
For n×n real matrices K, M and N, K=M−N is called a regular splitting of the matrix K
if M is nonsingular with M−1≥0 and N≥0 [20, Definition 3.28].

By noting the special structures in (1.2), several fixed-point iterative methods includ-
ing the SI method, the MSI method, the NBJ method and the NBGS method have been
proposed in [1,2,18] for computing the minimal positive solution of the vector equations
(1.2). Their corresponding iterative schemes are all of O(n2) complexity per iteration and
could be viewed as coming from various regular splittings of the M-matrix

K=

(
I−diag(Pv∗) −diag(u∗)P

−diag(v∗)Q I−diag(Qu∗)

)
, (1.3)


