DOI: 10.4208/aamm.2013.m230 August 2015

Nonlinear Stability and *B*-convergence of Additive Runge-Kutta Methods for Nonlinear Stiff Problems

Chao Yue^{1,2}, Aiguo Xiao^{1,*} and Hongliang Liu¹

 ¹ School of Mathematics and Computational Science & Hunan Key Laboratory for Computation and Simulation in Science and Engineering, Xiangtan University, Hunan 411105, China
² School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan 430074, China

Received 25 May 2013; Accepted (in revised version) 27 October 2014

Abstract. In this paper, we are devoted to nonlinear stability and *B*-convergence of additive Runge-Kutta (ARK) methods for nonlinear stiff problems with multiple s-tiffness. The concept of $(\theta, \bar{p}, \bar{q})$ -algebraic stability of ARK methods for a class of stiff problems $K_{\sigma,\tau}$ is introduced, and it is proven that this stability implies some contractive properties of the ARK methods. Some results on optimal *B*-convergence of ARK methods for $K_{\sigma,0}$ are given. These new results extend the existing ones of RK methods and ARK methods in the references. Numerical examples test the correctness of our theoretical analysis.

AMS subject classifications: 65L08, 65L20

Key words: Stiff problem, additive Runge-Kutta method, implicit-explicit method, *B*-convergence, algebraic stability.

1 Introduction

Consider the initial value problems of stiff ordinary differential equations

$$\begin{cases} y'(t) = f(t,y) = f^{[1]}(t,y(t)) + \dots + f^{[N]}(t,y(t)), & t \in [0,T], \\ y(0) = y_0, \end{cases}$$
(1.1)

where $y(t), y_0 \in \mathbb{R}^m$, f and $f^{[i]}:[0,T] \times \mathbb{R}^m \to \mathbb{R}^m$ $(i=1,2,\dots,N)$ are sufficiently smooth vector functions with multiple stiffness. Assume that the problems (1.1) satisfy

$$2\langle f^{[i]}(t,y) - f^{[i]}(t,\tilde{y}), y - \tilde{y} \rangle$$

$$\leq \sigma_i \|y - \tilde{y}\|^2 + \tau_i \|f^{[i]}(t,y) - f^{[i]}(t,\tilde{y})\|^2, \quad i = 1, 2, \cdots, N, \quad \forall y, \tilde{y} \in \mathbb{R}^m,$$
(1.2)

*Corresponding author.

Email: xag@xtu.edu.cn (A. G. Xiao)

http://www.global-sci.org/aamm

©2015 Global Science Press

where σ_i , τ_i (*i*=1,2,...,*N*) are real numbers, the norm $\|\cdot\|$ is induced by the standard inner product $\langle \cdot, \cdot \rangle$ on R^m . Let $\sigma = [\sigma_1, \sigma_2, \dots, \sigma_N]$, $\tau = [\tau_1, \tau_2, \dots, \tau_N]$. The class of all problems (1.1) satisfying the condition (1.2) is called the class $K_{\sigma,\tau}$. We assume that the true solution y(t) of (1.1) is unique and sufficiently smooth.

In this paper, the symbol $G \ge 0$ (G > 0) means that the matrix G is non-negative definite (positive definite), the symbol $x \ge \tilde{x}$ ($x > \tilde{x}$) means that the vectors $x = [x_1, x_2, \dots, x_k]^T$, $\tilde{x} = [\tilde{x}_1, \tilde{x}_2, \dots, \tilde{x}_k]^T \in \mathbb{R}^k$ satisfy $x_i \ge \tilde{x}_i$ ($x_i > \tilde{x}_i$), $i = 1, 2, \dots, k$. ||G|| denotes the norm of the matrix G, which is subject to the vector norm $|| \cdot ||$; $\mu(G)$ denotes the logarithmic matrix norm of G.

For the class $K_{\sigma,\tau}$ being non-empty, it is easy to prove that $\sigma_j \tau_j \le 1$ when $\tau_j \le 0$ for $j \in \{1, 2, \dots, N\}$. In fact, if $K_{\sigma,\tau}$ is not empty, then there exists an initial value problem belonging to $K_{\sigma,\tau}$ with the vector function $f^{[i]}(t,y)$ satisfying the condition (1.2), $i=1,2,\dots,N$. Obviously, $\sigma_j \tau_j \le 0$ when $\tau_j = 0$ or $\tau_j < 0$, $\sigma_j \ge 0$ for $j \in \{1,2,\dots,N\}$. When $\tau_j < 0$, $\sigma_j < 0$, we have

$$\begin{aligned} &\sigma_{j} \|y - \widetilde{y}\|^{2} + \tau_{j} \|f^{[j]}(t,y) - f^{[j]}(t,\widetilde{y})\|^{2} \\ &\geq 2 \langle f^{[j]}(t,y) - f^{[j]}(t,\widetilde{y}), y - \widetilde{y} \rangle \\ &\geq -2 \|y - \widetilde{y}\| \cdot \|f^{[j]}(t,y) - f^{[j]}(t,\widetilde{y})\| \\ &\geq \frac{1}{\tau_{j}} \|y - \widetilde{y}\|^{2} + \tau_{j} \|f^{[j]}(t,y) - f^{[j]}(t,\widetilde{y})\|^{2}, \end{aligned}$$

for $\forall t \ge 0$, $\forall y, \tilde{y} \in \mathbb{R}^m$, $y \ne \tilde{y}$. Thus $\sigma_j \ge 1/\tau_j$, i.e., $\sigma_j \tau_j \le 1$. This fact for the class $K_{\sigma,\tau}$ with N = 1 was shown in [25]. Therefore, in this paper, we further assume that the class $K_{\sigma,\tau}$ satisfies the conditions $\sigma_i \tau_i \le 1, i = 1, 2, \cdots, N$.

In [25], some properties of the class $K_{\sigma,\tau}$ with N = 1 are given. Now, we extend them to the case N > 1.

Lemma 1.1. *If* σ < 0, *then*

$$K_{\sigma,\tau} \subset K_{\sigma-\varepsilon,\tau+\widetilde{M}(\varepsilon,\sigma,\tau)}$$
 for $\forall \varepsilon = (\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_N)^T \ge 0$,

where

$$\widetilde{M}(\varepsilon,\sigma,\tau) = (\varepsilon_1 \overline{M}(\sigma_1,\tau_1), \varepsilon_2 \overline{M}(\sigma_2,\tau_2), \cdots, \varepsilon_N \overline{M}(\sigma_N,\tau_N))^T, \quad \overline{M}(\sigma_i,\tau_i) = \left(\frac{1+\sqrt{1-\sigma_i\tau_i}}{\sigma_i}\right)^2.$$

Proof. For any problems belonging to the class $K_{\sigma,\tau}$, Eqs. (1.1)-(1.2) yield

$$\sigma_i \|y - \widetilde{y}\|^2 + 2\|y - \widetilde{y}\| \|f^{[i]}(t, y) - f^{[i]}(t, \widetilde{y})\| + \tau_i \|f^{[i]}(t, y) - f^{[i]}(t, \widetilde{y})\|^2 \ge 0,$$

and

$$|\sigma_i||y - \widetilde{y}|| + ||f^{[i]}(t, y) - f^{[i]}(t, \widetilde{y})||| \le \sqrt{1 - \sigma_i \tau_i} ||f^{[i]}(t, y) - f^{[i]}(t, \widetilde{y})||,$$