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Abstract. Seventh-order hybrid cell-edge and cell-node dissipative compact scheme
(HDCS-E8T7) is extended to a new implicit large eddy simulation named HILES on
stretched and curvilinear meshes. Although the conception of HILES is similar to that
of monotone integrated LES (MILES), i.e., truncation error of the discretization scheme
itself is employed to model the effects of unresolved scales, HDCS-E8T7 is a new high-
order finite difference scheme, which can eliminate the surface conservation law (SCL)
errors and has inherent dissipation. The capability of HILES is tested by solving sever-
al benchmark cases. In the case of flow past a circular cylinder, the solutions of HILES
fulfilling the SCL have good agreement with the corresponding experiment data, how-
ever, the flowfield is gradually contaminated when the SCL error is enlarged. With the
help of fulling the SCL, ability of HILES for handling complex geometry has been en-
hanced. The numerical solutions of flow over delta wing demonstrate the potential of
HILES in simulating turbulent flow on complex configuration.
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1 Introduction

Large Eddy Simulation (LES) is a promising approach for engineering problems with
lower cost than direct numerical simulation (DNS) and higher accuracy than Reynolds
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averaged NavierStokes (RANS) models. In large eddy simulation of turbulent flows, the
small-scale structures are left unresolved and should be accounted by a subgrid-scale (S-
GS) turbulence model. As well known, there is complex interaction between SGS model
and truncation errors of numerical methods [1–4]. This complex interaction leads to that
it is difficult to quantify and control discretization errors in LES methods. However, this
interference can also be beneficial. Kawamura et al. [5] indicated that the truncation error
of a linear upwind scheme in some cases may function as implicit SGS model, and this is
the conception of monotone integrated LES (MILES), which is proposed by Boris et al. [6].
Instead of an explicit computation of the SGS stress, the truncation error of the discretiza-
tion scheme itself is employed to model the effects of unresolved scales. For MILES, the
resolved scales are connected with the unresolved scales properly [7, 8]. In 2007, a theo-
retical connection between explicit LES models and the implicit modeling of MILES was
derived by Margolin et al. [8] using modified equation analysis (MEA). In particular, they
have developed a structural explanation of why some numerical methods work well as
implicit subgrid models whereas others are inadequate. Following the idea of MILES,
ILES is developed by Visbal et al. [9]. Nowadays, MILES and ILES are widely accept-
ed and applied [10–12]. Although the conception of ILES and MILES is similar, there
are two main differences between MILES and ILES. Firstly, the descretization schemes of
ILES are the fourth-order and sixth-order central compact scheme proposed by Lele [13].
Secondly, numerical dissipation of ILES is introduced by high-order filtering, not by the
schemes themselves.

Applications of LES to increasingly complex configurations of engineering interest
is motivated by the need to provide more realistic characterizations of complex flows.
On the other hand, the necessity of high-order scheme for LES of turbulent flows has
been recognized by many researchers [1–3]. Then high-order schemes with ability han-
dling complex geometry are attractive methods for the LES. Finite difference schemes
are widely used for their relative simpleness and flexibility. However, applications of
high-order finite difference schemes are still challenged by complex meshes. When the
numerical simulation is performed by these schemes on complex mesh, there may be
some challenges, such as robustness and grid-quality sensitivity [14,15]. Fortunately, this
deficiency can be largely removed by the researches of the Geometric Conservation Law
(GCL) [16–20]. The GCL contains surface conservation law (SCL) and volume conserva-
tion law (VCL). The VCL has been widely studied for time-dependent grids, while the
SCL is merely discussed for finite difference schemes. If the SCL has not been satisfied,
numerical instabilities and even computing collapse may appear on complex curvilinear
grids during numerical simulation. In order to fulfill the SCL for high-order finite differ-
ence schemes, a conservative metric method (CMM) is derived by Deng et al. [16]. The
CMM is achieved by computing grid metric derivatives through a conservative form with
the same scheme applied to fluxes. According to the principle of satisfying the CMM, a
seventh-order hybrid cell-edge and cell-node dissipative compact scheme (HDCS-E8T7)
has been proposed for complex geometry [21]. The HDCS-E8T7 has inherent dissipa-
tion to dissipate unresolvable wavenumbers, therefore the filtering is not needed. The


