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Abstract. A fully implicit numerical method, based upon a combination of adap-
tively refined hierarchical meshes and geometric multigrid, is presented for the
simulation of binary alloy solidification in three space dimensions. The compu-
tational techniques are presented for a particular mathematical model, based upon
the phase-field approach, however their applicability is of greater generality than
for the specific phase-field model used here. In particular, an implicit second or-
der time discretization is combined with the use of second order spatial differences
to yield a large nonlinear system of algebraic equations as each time step. It is
demonstrated that these equations may be solved reliably and efficiently through
the use of a nonlinear multigrid scheme for locally refined grids. In effect this pa-
per presents an extension of earlier research in two space dimensions (J. Comput.
Phys., 225 (2007), pp. 1271–1287) to fully three-dimensional problems. This exten-
sion is validated against earlier two-dimensional results and against some of the
limited results available in three dimensions, obtained using an explicit scheme.
The efficiency of the implicit approach and the multigrid solver are then demon-
strated and some sample computational results for the simulation of the growth of
dendrite structures are presented.
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1 Introduction

The modelling of solidification structures, in particular the growth of dendritic crys-
tals, is a subject of intense and enduring interest within the scientific community, both
because dendrites are a prime example of spontaneous pattern formation and due to
their pervasive influence on the engineering properties of metals. In all but the most
restrictive of cases, analytical solutions to the equations of motion for the solid-liquid
interface, using techniques such as boundary integral methods (microscopic solvabil-
ity theory [1, 4, 26, 40]), cannot be found and recourse must be made to numerical
techniques. These include cellular automaton [13, 33], front-tracking [7], one-domain
multiphase models [10,32,55] and level set techniques [9,18,27,35]. However, the tech-
nique which over the last few years has received the most attention is that of phase-
field simulation [8, 28, 29, 39], in which a non-conserved order parameter φ is defined
over the whole domain, which encodes the phase state of the material. By assuming
the interface between the solid and liquid (or different solid phases in multi-phase
modelling) to be diffuse, φ is rendered continuous, wherein standard techniques for
partial differential equations (PDEs) may be used. This allows a regular Eulerian mesh
to be used and avoids many of the topological complexities involved with front track-
ing methods.

However, the application of phase-field modelling leads to a number of issues. The
resulting set of coupled PDEs is unsteady, highly non-linear and may moreover suffer
from significant multi-scale problems. The latter arises because although the phase-
field equations are formulated such that in the asymptotic limit of the diffuse interface
width, δ, tending to zero, the corresponding sharp interface equations are recovered
exactly, this is not sufficient to ensure that the solutions do not have a dependence
upon δ. Such limitations may be overcome by formulating the model in the so-called
”thin interface limit” [22–25], whereby asymptotic expansions of the solution on the
inner and outer regions of the solid-liquid interface are matched to obtain an equa-
tion set in which the solution is independent of the width of the diffuse interface.
However, in order to perform the asymptotic matching highly restrictive assump-
tions need to be made about the thermodynamics governing the phase transforma-
tion, which can restrict the applicability of such models. Consequently, in many cases
phase-field models are constructed such that δ is much smaller than the other length
scales characteristic of the problem. In particular, there is a growing body of opinion
that ”the sharp interface limit of a phase-field model is not the only meaningful phys-
ical limit” [12]. This view draws on the Gibbs [15] interpretation of understanding all
interfacial boundaries as being of finite width. In the context of the crystallisation of
metals this finite width interface can be understood physically as the number of atom
widths over which the long range order characteristic of the crystalline solid is lost,
and represents a tendency towards using interface widths in phase-field modelling
which may be of the order of the capillary length, typically 2 − 5 × 10−10m. This com-
pares with typical microstructural length scales which are of the order 10−6 − 10−5m.

Due to this multi-scale nature phase-field simulations tend to be highly compu-


