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Abstract. We consider a distributed optimal control problem governed by an elliptic
PDE, and propose an embedded discontinuous Galerkin (EDG) method to approxi-
mate the solution. We derive optimal a priori error estimates for the state, dual state,
and the optimal control, and suboptimal estimates for the fluxes. We present numerical
experiments to confirm our theoretical results.
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1 Introduction

We consider approximating the solution of the following distributed control problem.
Let Ω⊂Rd (d≥ 2) be a Lipschitz polyhedral domain with Lipschitz boundary Γ= ∂Ω.
The goal is to minimize

J(u)=
1

2
‖y−yd‖2

L2(Ω)+
γ

2
‖u‖2

L2(Ω), γ>0, (1.1)

subject to

−∆y= f +u in Ω, (1.2a)

y= g on ∂Ω. (1.2b)
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It is well known that the optimal control problem (1.1)-(1.2) is equivalent to the optimality
system

−∆y= f +u in Ω, (1.3a)

y= g on ∂Ω, (1.3b)

−∆z=yd−y in Ω, (1.3c)

z=0 on ∂Ω, (1.3d)

z−γu=0 in Ω. (1.3e)

Different numerical methods for optimal control problems governed by partial differen-
tial equations have been extensively studied by many researchers. Numerical methods
that have been investigated for this kind of problem include approaches based on stan-
dard finite element methods [1, 7, 15, 19, 28], mixed finite elements [4–6, 8, 9, 21, 22], and
discontinuous Galerkin (DG) methods [27, 36].

Recently, hybridizable discontinuous Galerkin (HDG) methods have been developed
for many partial differential equations; see, e.g., [2, 3, 10, 11, 13, 14, 29–31, 34]. HDG meth-
ods keep the advantages of DG methods and mixed methods, while also having less
globally coupled unknowns. HDG methods have now also been applied to many differ-
ent optimal control problems [23–25, 37].

The embedded discontinuous Galerkin (EDG) methods, originally proposed in [20],
are obtained from HDG methods by replacing the discontinuous finite element space for
the numerical traces with a continuous space. EDG methods also retain many of the ad-
vantages of DG and mixed methods; furthermore, the number of degrees of freedoms
for the EDG method are much smaller than the HDG methods. This gain in computa-
tional efficiency can come with a loss: for the Poisson equation, convergence rates for the
EDG method are one order lower than the HDG method and the convergence rate for
the flux is suboptimal [12]. However, for problems with strong convection the enhanced
convergence properties of HDG methods are reduced [18]. Therefore, EDG methods are
competitive for such problems, and researchers have recently begun to thoroughly inves-
tigate EDG methods for various partial differential equations [16, 17, 26, 32, 33].

Our long term goal is to devise efficient and accurate methods for complicated opti-
mal flow control problems. EDG methods have potential for such problems; therefore, as
a first step, we consider an EDG method to approximate the solution of the above optimal
control problem for the Poisson equation. We use an EDG method with polynomials of
degree k≥1 to approximate all the variables of the optimality system (1.3), i.e., the state
y, dual state z, the numerical traces, and the fluxes q=−∇y and p=−∇z. We describe
the method in Section 2, and in Section 3 we obtain the error estimates

‖y−yh‖0,Ω=O(hk+1), ‖z−zh‖0,Ω=O(hk+1),

‖q−qh‖0,Ω=O(hk), ‖p−ph‖0,Ω=O(hk),


