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Abstract. Direct Simulation Monte Carlo (DSMC) methods for the Boltzmann equa-
tion employ a point measure approximation to the distribution function, as simu-
lated particles may possess only a single velocity. This representation limits the
method to converge only weakly to the solution of the Boltzmann equation. Uti-
lizing kernel density estimation we have developed a stochastic Boltzmann solver
which possesses strong convergence for bounded and L∞ solutions of the Boltz-
mann equation. This is facilitated by distributing the velocity of each simulated
particle instead of using the point measure approximation inherent to DSMC. We
propose that the development of a distributional method which incorporates dis-
tributed velocities in collision selection and modeling should improve convergence
and potentially result in a substantial reduction of the variance in comparison to
DSMC methods. Toward this end, we also report initial findings of modeling colli-
sions distributionally using the Bhatnagar-Gross-Krook collision operator.
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1 Introduction

Direct Simulation Monte Carlo (DSMC) is a stochastic simulation method which ap-
proximates the physics of the Boltzmann equation on a set of simulated particles. The
method was originally developed in the mid-1960’s by Bird [8, 9], and is based on
a probabilistic simulation of the motions and interactions of a fraction of the total
number of particles in the gas. The method relies on an approximation known as the
uncoupling principle, which allows intermolecular collisions to be decoupled from
particle convection [17].
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Initially, the DSMC method was met with some trepidation. Although remaining
true to the principles of kinetic theory, the method itself was not formally derived
from the Boltzmann equation, the governing equation of kinetic theory. In its sim-
plest form, the Boltzmann equation describes the evolution of the molecular velocity
probability density function, f : (R3 × Λ × R) → R+. The function is defined over
a seven dimensional space which includes three dimensions of velocity components,
three dimensions of physical space in the domain Λ ⊆ R3, and the additional dimen-
sion of time. The term velocity distribution function is used under various definitions
in the literature, all of which represent some scaled form of the probability density
function for molecular velocity. Throughout this paper the term velocity distribution
function taken to mean the probability density function for molecular velocity and
will be denoted by f .

The Boltzmann equation accounts for changes to f due to three influences: particle
convection, acceleration of particles by external forces, and intermolecular collisions.
The equation may be modified to include the distribution of energy over various in-
ternal energy modes, but for simplicity we consider only the basic case of a simple,
monatomic gas. In this case, the Boltzmann equation is given by
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Here r⃗ is the spatial variable, c⃗ is the velocity variable, t is the temporal variable, and
F⃗ is any externally applied forcing. The collision integral J is defined as
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where S+
2 denotes the positive half of the unit sphere in R3, Ω⃗ is the collision orien-

tation vector, σ is the collision cross section, g = ∥⃗c − c⃗1∥, and {c⃗′, c⃗′1} are the post-
collision velocities given by
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In 1980, Nanbu [17] proposed the first DSMC method derived directly from the Boltz-
mann equation, and in 1989, Babovsky and Illner proved weak convergence of Nanbu’s
method for L1 solutions of the space-homogeneous [5], and space-inhomogeneous [6],
Boltzmann equations. Wagner [22] established similar convergence for Bird’s method
in 1992, giving DSMC a firm theoretical foundation.

The DSMC method also has inherent drawbacks. A significant number of particles
must be simulated to achieve realistic results. This raises storage issues as the position


