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Abstract. In this paper, we analyze the Wilson element method of the eigenvalue
problem in arbitrary dimensions by combining a new technique recently developed
in [10] and the a posteriori error result. We prove that the discrete eigenvalues are
smaller than the exact ones.
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1 The Wilson element in any dimension

This paper is devoted to the finite element approximation of the following elliptic
eigenvalue problem: find (λ, u) ∈ R × H1

0(Ω) with

(∇u,∇v)L2(Ω) = λ(ρu, v)L2(Ω), for any v ∈ H1
0(Ω), with

∥∥ρ
1
2 u

∥∥
L2(Ω)

= 1, (1.1)

where ρ ∈ L∞(Ω) is a positive function.
Let Th be a regular n-rectangular triangulation of the n-rectangular domain Ω⊂Rn

with 2 ≤ n in the sense that ∪
K∈Th

K = Ω̄,

two distinct elements K and K′ in Th are either disjoint, or share the ℓ-dimensional
hyper-plane, ℓ = 0, · · · , n − 1. Let Hh denote the set of all n − 1 dimensional hyper-
planes in Th with the set of interior n − 1 dimensional hyper-planes Hh(Ω) and the
set of boundary n − 1 dimensional hyper-planes Hh(∂Ω). We let Nh denote the set
of nodes of Th with the set of internal nodes Nh(Ω) and the set of boundary nodes
Nh(∂Ω).
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For each K ∈ Th, we introduce the following affine invertible transformation

FK : K̂ → K, xi = hxi ,Kξi + x0
i ,

with the center (x0
1, x0

2, · · · , x0
n) and the lengths 2hxi ,K of K in the directions of the xi-

axis, and the reference element K̂ = [−1, 1]n. In this paper, we only consider the
uniform mesh with hxi = hxi ,K for any K ∈ Th. In addition, we set h = max1≤i≤n hxi .

Denote by QnD(K̂) the nonconforming Wilson element space [17] on the reference
element defined by

QnD(K̂) = Q1(K̂) + span
{

ξ2
1 − 1, ξ2

2 − 1, · · · , ξ2
n − 1

}
, (1.2)

where Q1(K̂) is the space of polynomials of degree≤ 1 in each variable. The noncon-
forming Wilson element space Vnc

h is then defined as

Vnc
h :=

{
v ∈ L2(Ω) : v|K ◦ FK ∈ QnD(K̂) for each K ∈ Th, v is continuous

at the internal nodes, and vanishes at the boundary nodes
}

.

Define the discrete semi-norm on Vnc
h by

|v|2h = ∑
K∈Th

∥∇v∥2
L2(K).

By the Poincare inequality, we have | · |h as a norm on Vnc
h . The finite element approx-

imation of Problem (1.1) reads: find (λh, uh) ∈ R × Vnc
h , such that

(∇huh,∇hvh)L2(Ω) = λh(ρuh, vh)L2(Ω), for any vh ∈ Vnc
h , with

∥∥ρ
1
2 uh

∥∥
L2(Ω)

= 1. (1.3)

The purpose of this paper is to analyze the lower approximation property of eigenval-
ues produced in (1.3). By combining the method based on the identity from [1,11] and
the technique developed for the Adini element in a recent paper [10], we prove that
the discrete eigenvalues are smaller than the exact ones when the meshsize h is small
enough. Compared to the result of [19] only for the three dimensions, the novelties of
the paper are of twofold: It analyzes the Wilson element in any dimension [17]; it is
able to weaken the regularity condition on the eigenfunction.

The rest of the paper is organized as follows. In the following section, we prove the
main result of this paper, ie., the discrete eigenvalues produced by the Wilson element
are smaller than the exact ones. Some proof details are presented in Section 3.

2 Lower approximations of eigenvalues

We show that the approximate eigenvalues are smaller than the exact ones in this
section. We first define the canonical interpolation. Let

ai = (ξ1i, ξ2i, · · · , ξni), i = 1, · · · , 2n,


