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Abstract. Inspired by the behavior of the blind for hill-climbing using a stick to de-
tect a higher place by drawing a circle, we propose a heuristic direct search method to
solve the unconstrained optimization problems. Instead of searching a neighbourhood
of the current point as done in the traditional hill-climbing, or along specified search
directions in standard direct search methods, the new algorithm searches on a surface
with radius determined by the motion of the stick. The significant feature of the pro-
posed algorithm is that it only has one parameter, the search radius, which makes the
algorithm convenient in practical implementation. The developed method can shrink
the search space to a closed ball, or seek for the final optimal point by adjusting search
radius. Furthermore our algorithm possesses multi-resolution feature to distinguish
the local and global optimum points with different search radii. Therefore, it can be
used by itself or integrated with other optimization methods flexibly as a mathemat-
ical optimization technique. A series of numerical tests, including high-dimensional
problems, have been well designed to demonstrate its performance.
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1 Introduction

For simplicity, we limit our discussion to the following unconstrained optimization prob-
lem

max
x∈Ω

f (x), Ω⊂Rn,
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where f : Rn→R. The following statements are also suitable to find the minima of ob-
jective function with constraint conditions. There have been innumerable approaches
developed to solve these optimization problems. These methods usually can be divided
into two types, derivative-based methods and derivative-free methods, depending on
whether they use derivative information or not. The derivative-based approaches appeal
to the Taylor’s series expansion of the objective function [1–3]. For example, the steepest
descent method assumes the availability of first derivatives and uses the first-order Tay-
lor polynomial to construct local linear approximations of f . Newton’s method assumes
the availability of first and second derivatives and uses the second-order Taylor polyno-
mial to construct local quadratic approximations of f . However, for a variety of reasons
there have always been many instances where (at least some) derivatives are unavailable
or unreliable, or finite-difference derivative approximation is unavailable or available at
a prohibitive cost. Some of the reasons contain increasing complexity in mathematical
modeling, higher sophistication of scientific computing, an abundance of legacy codes,
and data science [4]. Nevertheless, under such circumstances it may still be desirable
to carry out optimization. It follows that the derivative-free optimization technique is
required.

The derivative-free optimization is an area of long history and current rapid growth
in the scientific and engineering communities. The derivative-free algorithms can mainly
be classified as direct and model-based [5]. Direct algorithms usually determine search
directions by evaluating the function f directly, whereas model-based algorithms con-
struct and utilize a surrogate model of f to guide the search process. Recently devel-
oped methods based trust-region using interpolation model are in this category [6–9]. In
practical implementation, heuristic algorithms, such as simulated annealing, genetic al-
gorithm, neural networks, and deep learning [10, 11], have been also developed to solve
derivative-free optimization. Here we focus our attention on the direct search algorithms.

The term ”direct search”, firstly coined by Hooke and Jeeves in 1961 year [12], is
used to describe a sequential examination of trial generated by a certain strategy. From a
modern viewpoint, the direct search methods neither compute nor approximate deriva-
tives [13]. A popular direct search method is the Nelder-Mead simplex algorithm [14].
The algorithm starts with a set of points that form a simplex. In each iteration, the objec-
tive function values at the corner points of the simplex determine the worst corner point.
The algorithm attempts to replace the worst point by introducing a new vertex by a reflec-
tion, an expansion, or a contraction operator that results in a new simplex. Another class
of direct search methods are the directional direct-search methods, including the origi-
nal Hooke-Jeeves algorithm [12], the coordinate-, or compass-search methods, pattern-
search methods [4], generalized pattern search method [15], and generating set search
method [16]. A multidirectional search algorithm, regarded as both a directional and a
simplicial direct search method, has been also proposed by Dennis and Torczon [17]. The
common ground of these directional direct-search methods is that they incorporate some
mechanism to choose ascend directions and search along these directions with an appro-
priate step length from the current iterate for a new iterate with a higher function value.


