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Abstract. A class of steady-state metal-forming problems, with rigid-plastic, in-
compressible, strain-rate dependent material model and nonlocal Coulomb’s fric-
tion, is considered. Primal, mixed and penalty variational formulations, containing
variational inequalities with nonlinear and nondifferentiable terms, are derived and
studied. Existence, uniqueness and convergence results are obtained and shortly
presented. A priori finite element error estimates are derived and an algorithm,
combining the finite element and secant-modulus methods, is utilized to solve an
illustrative extrusion problem.
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1 Introduction

The computational and experimental study of metal-forming processes has shown
that the flow theory of plasticity [1–3] adequately approximates the material behaviour
for most of them [4–7], as the frictional contact conditions also significantly influ-
ence the results. Due to similarity with the the contact problems in elasticity [8–15],
corresponding metal-forming, or plastic flow contact problems, could be formulated
and mathematically analysed. This direction of analysis has been followed for exam-
ple in [16–20] and references therein, where steady-state wire-drawing, extrusion and
rolling problems, with linear rigid-viscoplastic Bingham material model [3, 8–10], or
nonlinear rigid-viscoplastic material models [4–7] and normal compliance, or nonlo-
cal contact and Coulomb’s friction models [11–15], have been formulated and studied.
Variational inequality formulations have been derived and existence and uniqueness
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results have been obtained. The solution of the resulting nonlinear variational prob-
lems, requires appropriate succesive linearization methods [9, 11, 12, 21], finite ele-
ment methods and computational algorithms [11, 21, 22], to be applied. In [17–20] for
example, the secant-modulus method, proposed by Kachanov [9] for solving nonlin-
ear variational problems in the deformation theory of plasticity, has been extended to
nonlinear variational inequalities, as in [20] a finite element–secant-modulus compu-
tational algorithm is proposed and used.

In this work, a class of metal-forming problems is considered, describing steady-
state drawing and extrusion, with nonlocal Coulomb’s friction through a rigid die,
of an isotropic, rigid-plastic, strain-rate sensitive incompressible metallic strip (work-
piece). Primal, mixed and penalty variational inequality formulations, with strongly
nonlinear and nondifferentiable terms, are derived and studied. Under restrictions
on the material characteristics, existence, uniqueness and convergence results are ob-
tained and shortly presented. Finite element approximations are performed, a priori
error estimates are derived and an algorithm, combining the finite element and the
secant-modulus method, is utilized to solve an illustrative extrusion problem.

2 Statement of the problem

We suppose that a metallic workpiece occupies the domain Ω⊂ Rk (k=2, 3), with suffi-
ciently regular boundary Γ, constituting of six open, disjoint subsets (Fig. 1). By Γ1 and
Γ5 the vertical rear and front ends of the workpiece are denoted. A constant process
velocity is prescribed on Γ1 at extrusion, as Γ5 is assumed free of tractions, or on Γ5 at
drawing, as then Γ1 is assumed tractions free. The boundary Γ2 ∪ Γ4 is also assumed
tractions free. The contact boundary is denoted by Γ3. Due to the symmetry, only one
half of the workpiece is considered, as by Γ6 the boundary of symmetry is denoted.
We shall further identify the points of Ω̄=Ω ∪ Γ by their cartesian coordinates x={xi}
and shall use the standard indicial notation and summation convention. Let us denote
by

u(x) = {ui(x)}, σ(x) = {σij(x)}, ε̇(x) = {ε̇ ij(x)}, (1 ≤ i, j ≤ k),

the velocity vector, stress and strain-rate tensors respectively and by

σ̄ =

√
3
2

sijsij, ˙̄ε =
√
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ėij ėij, (2.1)
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Figure 1: Strip drawing and extrusion problems.


