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Abstract. Ever since its introduction by Kane Yee over forty years ago, the finite-
difference time-domain (FDTD) method has been a widely-used technique for solv-
ing the time-dependent Maxwell’s equations that has also inspired many other
methods. This paper presents an alternative approach to these equations in the case
of spatially-varying electric permittivity and/or magnetic permeability, based on
Krylov subspace spectral (KSS) methods. These methods have previously been ap-
plied to the variable-coefficient heat equation and wave equation, and have demon-
strated high-order accuracy, as well as stability characteristic of implicit time-
stepping schemes, even though KSS methods are explicit. KSS methods for scalar
equations compute each Fourier coefficient of the solution using techniques devel-
oped by Golub and Meurant for approximating elements of functions of matrices by
Gaussian quadrature in the spectral, rather than physical, domain. We show how
they can be generalized to coupled systems of equations, such as Maxwell’s equa-
tions, by choosing appropriate basis functions that, while induced by this coupling,
still allow efficient and robust computation of the Fourier coefficients of each spatial
component of the electric and magnetic fields. We also discuss the application of
block KSS methods to problems involving non-self-adjoint spatial differential oper-
ators, which requires a generalization of the block Lanczos algorithm of Golub and
Underwood to unsymmetric matrices.
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1 Introduction

We consider Maxwell’s equation on the rectangle [0, 2π]3, with periodic boundary con-
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ditions. Assuming nonconductive material with no losses, we have

div Ê = 0, div Ĥ = 0, (1.1)

curl Ê = −µ
∂Ĥ
∂t

, curl Ĥ = ε
∂Ê
∂t

, (1.2)

where Ê, Ĥ are the vectors of the electric and magnetic fields, and ε, µ are the elec-
tric permittivity and magnetic permeability, respectively. We assume that these two
functions are smoothly varying in space.

By taking the curl of both sides of (1.2), we decouple the vector fields Ê and Ĥ and
obtain the equations

µε
∂2Ê
∂t2 = ∆Ê + µ−1curl Ê×∇µ, (1.3)

µε
∂2Ĥ
∂t2 = ∆Ĥ + ε−1curl Ĥ×∇ε. (1.4)

In paper [26], Yee proposed the original finite-difference time-domain method for solv-
ing Eqs. (1.1) and (1.2). This method uses a staggered grid to avoid solving simultane-
ous equations for Ê and Ĥ, and also removes numerical dissipation. However, because
it is an explicit finite-difference scheme, its time step is constrained by the CFL con-
dition. Nonetheless, it remains a widely used method to this day, and has inspired
a host of related methods, including, for example, several that are based on spatial
discretizations other than finite differences, such as a pseudospectral time-domain
(PSTD) method [20], an FDTD-FEM hybrid method [22], and a one-step algorithm
based on Chebyshev polynomial approximations [5]. In this paper, we introduce a
new time-domain method for these equations.

In [18], a class of methods, called Krylov subspace spectral (KSS) methods, was
introduced for the purpose of solving parabolic variable-coefficient PDE. These meth-
ods are based on techniques developed by Golub and Meurant in [7] for approximat-
ing elements of a function of a matrix by Gaussian quadrature in the spectral domain.
In [11, 14], these methods were generalized to the second-order wave equation, for
which these methods have exhibited even higher-order accuracy.

It has been shown in these references that KSS methods, by employing differ-
ent approximations of the solution operator for each Fourier coefficient of the solu-
tion, achieve higher-order accuracy in time than other Krylov subspace methods (see,
e.g., [13]) for stiff systems of ODE, and, as shown in [14], they are also quite stable,
considering that they are explicit methods. In [15, 16], the accuracy and robustness of
KSS methods were enhanced using block Gaussian quadrature.

It is our hope that the high-order accuracy achieved for the scalar wave equation
can be extended to systems of coupled wave equations such as those described by
Maxwell’s equations. Section 2 reviews the main properties of KSS methods, includ-
ing block KSS methods, as applied to the parabolic problems for which they were
originally designed. Section 3 reviews their application to the wave equation, includ-
ing previous convergence analysis. In Section 4, we discuss the modifications that


