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Abstract. This paper presents a comprehensive overview of the element-wise lo-
cally conservative Galerkin (LCG) method. The LCG method was developed to find
a method that had the advantages of the discontinuous Galerkin methods, without
the large computational and memory requirements. The initial application of the
method is discussed, to the simple scalar transient convection-diffusion equation,
along with its extension to the Navier-Stokes equations utilising the Characteristic
Based Split (CBS) scheme. The element-by-element solution approach removes the
standard finite element assembly necessity, with an face flux providing continuity
between these elemental subdomains. This face flux provides explicit local conser-
vation and can be determined via a simple small post-processing calculation. The
LCG method obtains a unique solution from the elemental contributions through
the use of simple averaging. It is shown within this paper that the LCG method
provides equivalent solutions to the continuous (global) Galerkin method for both
steady state and transient solutions. Several numerical examples are provided to
demonstrate the abilities of the LCG method.
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1 Introduction

The locally conservative Galerkin (LCG) method, introduced in 2004 [1], has been de-
veloped and employed in an increasing number of applications. It is however impor-
tant to note that its potential has not yet been fully realised. In this paper an overview
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of the method is provided along with several numerical examples to demonstrate its
ability.

The conservation of the Galerkin finite element method has been investigated by
many researchers [2–7] and the method has been shown to be globally conserva-
tive if Neumann boundary conditions are imposed. Local conservation is seen as a
highly valued property possessed by both finite volume methods and discontinuous
Galerkin (DG) finite element methods. Local (element-wise) conservation may be of
advantage when considering problems involving discontinuities or interfaces in prob-
lems such as porous-medium interfaces and fluid structure interaction.

In order to achieve a timely solution, the use of parallel computation is a desirable
property for a method to possess. In order to parallelise the global Galerkin method
domain decomposition techniques are required [8–10]. An alternative to decomposing
the domain would be to use an element-by-element solution scheme. Such a scheme
is already decomposed into multiple subdomains and as such is more applicable to
parallel computation.

To rectify some of the inherent drawbacks of the continuous (or global) Galerkin
(GG) method, the discontinuous Galerkin method (DGM) [11–22] has been developed.
The DGM allows for element by element solution and can therefore be easily paral-
lelised [23, 24]. Discontinuous methods can also utilise varying orders of approxi-
mation to locally capture a more refined solution [25]. Use of DG methods within
industry is often hampered by the large CPU and memory requirements, due to the
requirements of storing multiple solutions at a node as well as solving for additional
flux variables. Therefore, researchers have been seeking a DG method with the struc-
ture of a continuous Galerkin (CG) method [26].

The approach adopted within this paper allows for the introduction of the inter-
face fluxes within the continuous (global) framework [1, 27, 28], rather than adopt a
discontinuous Galerkin method to a continuous Galerkin framework. This method
can be readily adapted to existing industrial codes with a minimum of modification.
The adoption of the interface fluxes does not necessarily have to break the shape func-
tion spaces but can be constructed within the continuous framework. The proposed
method, corrected LCG, is identical to both the standard and stabilised versions of the
continuous Galerkin method for internal nodes. The LCG method and the CG method
are not identical on the global boundaries due to the nature of the CG method itself.
The LCG method is implicitly globally conservative and does not require the extra cal-
culations CG would require to be globally conservative. The LCG method utilises an
element-by-element solution approach removing the standard finite element assem-
bly, with a edge (2D) or face (3D) flux providing continuity between these elemental
subdomains. This removal of the standard assembly allows the elemental matrices to
be computed, inverted and stored at the pre-processing stages of a computation. This
is possible since often these matrices are functions of an element property, such as vol-
ume. In an Eulerian frame of reference this property does not change, therefore control
over individual elements gives a great deal of freedom to optimise memory require-
ments. Investigation has shown that the majority of LCG forms, especially the implicit


