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Abstract. In this paper, we propose a weak Galerkin finite element method (WG) for
solving the stationary incompressible Stokes equation in two or three dimensional
space. The weak Galerkin finite element method is highly flexible by allowing the
use of discontinuous functions on arbitrary polygons or polyhedra with certain shape
regularity. However, since additional variables are introduced, the computational cost
is much higher. Our new method can significantly reduce the computational cost while
maintaining the accuracy. Optimal error orders are established for the weak Galerkin
finite element approximations in various norms. Some numerical results are presented
to demonstrate the efficiency of the method.
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1 Introduction

Flows occur everywhere. Without flows we would not even exist. Thus the study of
flows is always one of the hot topics. From 1687, the Isac Newton do a famous experi-
ment of viscous flow. He had found that the resistance and velocity gradient of almost all
common fluids have linear relationships. It makes people reasonably know the viscous
flow. Then, the Euler equations had been proposed in 1755. After the many investiga-
tors of efforts, the ideal fluid without the viscidity have obtained gradually the perfect
level. Nevertheless, there was a wide gap between the solution of the ideal fluid and the
test result of the real fluid, sometimes even be on the contrary. Until 1821, Naiver and
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other specialists had started to consider the intermolecular forces in the Euler equations.
Then, the George Gabriel Stokes had made the viscosity coefficient µ represent the inter-
molecular forces and completed the Naiver-Stokes equations. Finally, the fundamental
equations of the viscous fluid mechanics had been established. When the viscous force
and the ratio of the advection inertial force of a flow is very small, it is called a Stokes flow
and the equations describing the flow is called Stokes equations. In this paper, we con-
sider the following Stokes equations for unknown velocity function u and the pressure
function p in the domain Ω

−µ∆u+∇p= f in Ω, (1.1a)
∇·u=0 in Ω, (1.1b)
u=g on ∂Ω, (1.1c)

where the Ω is a polygonal or polyhedra domain in Rd(d=2,3). The function p satisfies∫
Ω

p ds=0.

Here µ>0 is the viscosity coefficient, f is the source term, and g satisfies the compatibility
condition ∫

Ω
g·n ds=0,

where n is the unit outward normal vector on the domain boundary ∂Ω. For simplicity,
we assume that µ=1 and consider the homogeneous Drichlet boundary condition g=0.

The weak forms for the Stokes problems (1.1a)-(1.1c) in the primal velocity-pressure
formulation are to find (u;p)∈ [H1

0(Ω)]d×L2
0(Ω) such that

(∇u,∇v)−(p,∇·v)=(f,v), (1.2a)
(q,∇·u)=0, (1.2b)

for all (v;q)∈ [H1
0(Ω)]d×L2

0(Ω). This is a typical saddle point problem, so the stability
and uniqueness of solution can be proved by inf-sup condition. Before the last several
decades, the finite element method has been solved the Stokes problems (1.1a)-(1.1c) on
the weak forms (1.2a)-(1.2b). The detailed analysis can be found in [17, 19].

If (u;p)∈ [H1
0(Ω)]d×(L2

0(Ω)∩H1(Ω)), testing the Eq. (1.1b) and integration by parts
can be obtained the gradient-gradient weak form

(∇u,∇v)+(∇p,v)=(f,v), (1.3a)
(∇q,u)=0, (1.3b)

for all (v;q) ∈ [H1
0(Ω)]d×(L2

0(Ω)∩H1(Ω)). The parameters of the Theorem 5.4 in the
paper [3] are taken by m=0 and r=1, so we get L2 regularity. When the pressure function
p∈H1(Ω), the gradient function∇p exists. In this case, the variational forms (1.2a)-(1.2b)


