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Abstract. In this paper, we combine the generalized multiscale finite element method
(GMsFEM) with the balanced truncation (BT) method to address a parameter-
dependent elliptic problem. Basically, in progress of a model reduction we try to ob-
tain accurate solutions with less computational resources. It is realized via a spectral
decomposition from the dominant eigenvalues, that is used for an enrichment of mul-
tiscale basis functions in the GMsFEM. The multiscale bases computations are local-
ized to specified coarse neighborhoods, and follow an offline-online process in which
eigenvalue problems are used to capture the underlying system behaviors. In the BT
on reduced scales, we present a local-global strategy where it requires the observabil-
ity and controllability of solutions to a set of Lyapunov equations. As the Lyapunov
equations need expensive computations, the efficiency of our combined approach is
shown to be readily flexible with respect to the online space and an reduced dimen-
sion. Numerical experiments are provided to validate the robustness of our approach
for the parameter-dependent elliptic model.
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1 Introduction

A variety of research has been devoted to the developments of model reduction for high
simulation, optimal control, and engineering design. Many scientific applications in-
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clude the flow models in porous media and conduction models in composite materials.
These problems are inherently referred to as multiscale in nature, and they exhibit het-
erogeneous and high contrast behaviors. Traditional methods such as finite difference
method, finite element method, or discontinuous Galerkin method, would require the
use of very fine meshes to fully resolve the multiscale nature of media. To an end, the
practical applications are limited by the computational power. Therefore the interest in
developing efficient multiscale and model reduction methods for more computational
efficiency and accuracy are of particular interest.

There are many literatures on model reductions, see e.g. [1–3]. Model reduction per-
forms the discretization on a coarse grid, and it may be capable of incorporating fine-
scale features into coarse-scale schemes. Multiscale methods are used to solve a variety
of computational models. The construction of coarse space is involved in which solu-
tions are sought with the span of multiscale basis functions. Multiscale Finite Element
Method (MsFEM, [4]), Heterogeneous Multiscale Method (HMM, [5]) and related ap-
proaches [6–10] work for a variety of applications and offer an advantage in parallel
computings.

Progress has been made in recent years in developing the multiscale computations.
The Generalized Multiscale Finite Element Method (GMsFEM, see [11]) is a generaliza-
tion of the standard MsFEM, which uses appropriate snapshots and spectral decompo-
sitions for the additional enrichment of multiscale basis functions. Its main idea is to
systematically enrich the initial coarse space with the eigenvectors of local spectral prob-
lems, and gradually accounts for more fine scale details. The enrichment is performed on
a spectral decomposition by the fact that its computational efficiency has been validated
the online space construction for any input parameter is fast and it can be reused for any
force and boundary. Proper Orthogonal Decomposition (POD, see [2, 12–14]), is effective
to be used to find a low rank approximation to a Hilbert space, which is spanned by the
snapshots. In the case of matrix approximation, POD is basically Singular Value Decom-
position (SVD). And POD has been applied widely for a number of linear and nonlinear
problems.

The methodology of GMsFEM has been used in many recent studies [15–25]. Chung,
Efendiev and Li [15] derived an a-posteriori error indicator to develop an adaptive en-
richment for high-contrast flow models. A parameter-dependent, single-phase flow is
studied in [16], in which GMsFEM is used as a local model reduction, and BT is used
as a global model reduction. Hou and Liu [20] provided the harmonic multiscale basis
functions with an optimal approximation, and through singular value decompositions
of some oversampling operators a good efficiency is achieved. In [22] the GMsFEM is
combined with variable-separation techniques, and it presents an iterative algorithm for
solving the parameter independent PDEs repeatedly. Jiang and Li [24] proposed a model
sparse representation based on the mixed GMsFEM with elliptic random inputs, which
improves the online computation and the problem output. Transport flow problem in
perforated domains are considered in [25], a mixed Petrov-Galerkin GMsFEM formula-
tion is used to guarantee mass conservation and stability in model reductions.


