DOI: 10.4208/aamm.OA-2018-0117 December 2018

Nonconforming FEMs for the *p*-Laplace Problem

D. J. Liu*, A. Q. Li and Z. R. Chen

Department of Mathematics, Shanghai University, Shanghai 200444, China Received 3 May 2018; Accepted (in revised version) 8 July 2018

Abstract. The *p*-Laplace problems in topology optimization eventually lead to a degenerate convex minimization problem $E(v) := \int_{\Omega} W(\nabla v) dx - \int_{\Omega} f v dx$ for $v \in W_0^{1,p}(\Omega)$ with unique minimizer *u* and stress $\sigma := DW(\nabla u)$. This paper proposes the discrete Raviart-Thomas mixed finite element method (dRT-MFEM) and establishes its equivalence with the Crouzeix-Raviart nonconforming finite element method (CR-NCFEM). The sharper quasi-norm a priori and a posteriori error estimates of this two methods are presented. Numerical experiments are provided to verify the analysis.

AMS subject classifications: 65N12, 65N30, 65Y20

Key words: Adaptive finite element methods, nonconforming, *p*-Laplace problem, dual energy.

1 Introduction

We consider the following nonlinear *p*-Laplace problem $(2 \le p < \infty)$ in the bounded Lipschitz domain $\Omega \subset \mathbb{R}^2$ with the given $f \in L^q(\Omega)$ (*q* conjugate of *p*),

$$\begin{cases} -\operatorname{div}(|\nabla u|^{p-2}\nabla u) = f & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega. \end{cases}$$
(1.1)

This type of equation appears in many mathematical models of physical process, nonlinear diffusion and filtration, power-law materials, and viscoelastic materials, see [18, 27] for example. Most of these mathematical modeling are equivalent to the convex minimization problem [15] with energy

$$E(v) := \int_{\Omega} W(\nabla v) dx - F(v) \quad \text{for } v \in V := W_0^{1,p}(\Omega) = \{ v \in W^{1,p}(\Omega) : v |_{\partial \Omega} = 0 \}.$$
(1.2)

*Corresponding author.

Email: liudj@shu.edu.cn (D. J. Liu)

http://www.global-sci.org/aamm

1365

©2018 Global Science Press

Here and throughout this paper, $F(v) := \int_{\Omega} f v dx$ and the energy density function $W: \mathbb{R}^2 \to \mathbb{R}$ reads $W(A) := |A|^p / p$ with the derivative $DW(A) = |A|^{p-2}A$ for all $A \in \mathbb{R}^2 \setminus \{0\}$ and the dual function

$$W^{*}(A) := \frac{|A|^{q}}{q} \quad \left(\frac{1}{p} + \frac{1}{q} = 1\right).$$
(1.3)

Finite element approximation for (1.1) has been extensively studied by many authors, the previous works on a priori and a posteriori error estimations in the conventional $W^{1,p}(\Omega)$ -norm can be found, for example, in [15, 16, 18, 25, 28]. Sharper a priori error estimates were derived in [4, 17, 20] by developing the quasi-norm techniques, and these techniques were extended to establish improved a posteriori error estimators of residual type for the \mathcal{P}_1 conforming finite element methods (CFEM) and nonconforming finite element methods (NCFEM) [12, 14, 21, 22]. In [19], Kim applied quasinorm techniques to a mixed finite volume method. Nevertheless, the NCFEM analysis of flux $\sigma := DW(\nabla u)$, which is important in physical process and also the topic here, is almost not covered in the above references.

This paper focuses on (1.2) and the analysis of flux σ , proposes some simplified mixed finite element method (MFEM) with one-point numerical quadrature and explores some surprising advantages of the novel discrete Raviart-Thomas mixed finite element method (dRT-MFEM). First, the dRT-MFEM is equivalent to the Crouzeix-Raviart nonconforming first-order finite element method (CR-NCFEM). This generalizes the Marini representation [3, 24] and Arbogast [2] from linear and general variable coefficients elliptic PDEs to nonlinear *p*-Laplace problems. Second, the quasi-norm convergence analysis of dRT-MFEM (CR-NCFEM) leads to some optimal convergence rates with effective a posteriori error control.

The remaining parts of this paper are organized as follows. Section 2 introduces the precise notation and states the CR-NCFEM and dRT-MFEM for the *p*-Laplace problem. Section 3 establishes the equivalence result of dRT-MFEM and CR-NCFEM. The quasinorm a priori and a posteriori error estimates of CR-NCFEM and dRT-MFEM follow in Section 4 and Section 5. Some numerical experiments conclude the paper in Section 6 with empirical evidence of the superiority of the new NCFEM also for adaptive mesh-refinement.

Standard notation applies throughout this paper to Lebesgue and Sobolev spaces $L^p(\Omega)$, $H^s(\Omega)$, and $H(\operatorname{div}, \Omega)$, as well as to the associated norms $\|\cdot\|_{p,\Omega} := \|\cdot\|_{L^p(\Omega)}$, $\|\|\cdot\|\|_{p,\Omega} := \|\nabla\cdot\|_{L^p(\Omega)}$, and $\|\|\cdot\|\|_{N^{C,p,\Omega}} := \|\nabla_{N^{C}}\cdot\|_{L^p(\Omega)}$ with the piecewise gradient $\nabla_{N^{C}}\cdot|_T := \nabla(\cdot|_T)$ for all T in a regular triangulation \mathcal{T} of the polygonal Lipschitz domain Ω . Here and throughout, ":" denotes the scalar product in $\mathbb{R}^{m \times n}$ and the expression " \leq " abbreviates an inequality up to some multiplicative generic constant, i.e., $A \leq B$ means $A \leq CB$ with some generic constant $0 \leq C < \infty$, which depends on the interior angles of the triangles but not their sizes.