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Abstract. The p-Laplace problems in topology optimization eventually lead to a de-
generate convex minimization problem E(v) :=

´
ΩW(∇v)dx−

´
Ω f vdx for v∈W1,p

0 (Ω)
with unique minimizer u and stress σ := DW(∇u). This paper proposes the discrete
Raviart-Thomas mixed finite element method (dRT-MFEM) and establishes its equiva-
lence with the Crouzeix-Raviart nonconforming finite element method (CR-NCFEM).
The sharper quasi-norm a priori and a posteriori error estimates of this two methods
are presented. Numerical experiments are provided to verify the analysis.
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1 Introduction

We consider the following nonlinear p-Laplace problem (2≤ p<∞) in the bounded Lip-
schitz domain Ω⊂R2 with the given f ∈Lq(Ω) (q conjugate of p),{

−div(|∇u|p−2∇u)= f in Ω,
u=0 on ∂Ω.

(1.1)

This type of equation appears in many mathematical models of physical process, nonlin-
ear diffusion and filtration, power-law materials, and viscoelastic materials, see [18, 27]
for example. Most of these mathematical modeling are equivalent to the convex mini-
mization problem [15] with energy

E(v) :=
ˆ

Ω
W(∇v)dx−F(v) for v∈V :=W1,p

0 (Ω)={v∈W1,p(Ω) : v|∂Ω =0}. (1.2)
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Here and throughout this paper, F(v):=
´

Ω f vdx and the energy density function W :R2→
R reads W(A) := |A|p/p with the derivative DW(A)= |A|p−2A for all A∈R2\{0} and
the dual function

W∗(A) :=
|A|q

q

( 1
p
+

1
q
=1
)

. (1.3)

Finite element approximation for (1.1) has been extensively studied by many authors,
the previous works on a priori and a posteriori error estimations in the conventional
W1,p(Ω)-norm can be found, for example, in [15, 16, 18, 25, 28]. Sharper a priori error
estimates were derived in [4, 17, 20] by developing the quasi-norm techniques, and these
techniques were extended to establish improved a posteriori error estimators of residual
type for the P1 conforming finite element methods (CFEM) and nonconforming finite
element methods (NCFEM) [12, 14, 21, 22]. In [19], Kim applied quasinorm techniques to
a mixed finite volume method. Nevertheless, the NCFEM analysis of flux σ :=DW(∇u),
which is important in physical process and also the topic here, is almost not covered in
the above references.

This paper focuses on (1.2) and the analysis of flux σ, proposes some simplified mixed
finite element method (MFEM) with one-point numerical quadrature and explores some
surprising advantages of the novel discrete Raviart-Thomas mixed finite element method
(dRT-MFEM). First, the dRT-MFEM is equivalent to the Crouzeix-Raviart nonconforming
first-order finite element method (CR-NCFEM). This generalizes the Marini representa-
tion [3, 24] and Arbogast [2] from linear and general variable coefficients elliptic PDEs
to nonlinear p-Laplace problems. Second, the quasi-norm convergence analysis of dRT-
MFEM (CR-NCFEM) leads to some optimal convergence rates with effective a posteriori
error control.

The remaining parts of this paper are organized as follows. Section 2 introduces the
precise notation and states the CR-NCFEM and dRT-MFEM for the p-Laplace problem.
Section 3 establishes the equivalence result of dRT-MFEM and CR-NCFEM. The quasi-
norm a priori and a posteriori error estimates of CR-NCFEM and dRT-MFEM follow in
Section 4 and Section 5. Some numerical experiments conclude the paper in Section 6
with empirical evidence of the superiority of the new NCFEM also for adaptive mesh-
refinement.

Standard notation applies throughout this paper to Lebesgue and Sobolev spaces
Lp(Ω), Hs(Ω), and H(div,Ω), as well as to the associated norms ‖·‖p,Ω := ‖·‖Lp(Ω),
|||·|||p,Ω :=‖∇·‖Lp(Ω), and |||·|||

NC,p,Ω
:=‖∇NC ·‖Lp(Ω) with the piecewise gradient ∇NC ·|T :=

∇(·|T) for all T in a regular triangulation T of the polygonal Lipschitz domain Ω. Here
and throughout, ”:” denotes the scalar product in Rm×n and the expression ”.” abbrevi-
ates an inequality up to some multiplicative generic constant, i.e., A.B means A≤CB
with some generic constant 0≤C<∞, which depends on the interior angles of the trian-
gles but not their sizes.


