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Abstract. Since the original DDG method has been introduced by Liu et al. [8] in 2009,
a variety of DDG type methods have been proposed and further developed. In this
paper, we further investigate and develop a new DDG method with interface cor-
rection (DDG (IC)) as the discretization of viscous and heat fluxes for the compress-
ible Navier-Stokes equations on unstructured grids. Compared to the original DDG
method, the newly developed DDG (IC) method demonstrates its superior in deliver-
ing the optimal order of accuracy under demanding situations. Strategies in extension
and application of this newly developed DDG (IC) method for solving the compress-
ible Navier-Stokes equations and special treatments designed for handling boundary
viscous fluxes are presented and examined in this work. The performance of the new
DDG method with interface correction is carefully evaluated and assessed through a
number of typical test cases. Numerical experiments show that the new DDG method
with interface correction can achieve the optimal order of accuracy on both uniform
structured grids and nonuniform unstructured grids, which clearly indicates its po-
tential for further applications of real engineering practices.
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1 Introduction

Discontinuous Galerkin (DG) methods [1–3,16,18], as a typical representative in the com-
munity of high order methods, have been widely used in computational fluid dynamics,
computational acoustics, and computational magneto-hydrodynamics. The DG meth-
ods combine two advantageous features commonly associated with finite element (FE)
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and finite volume methods (FVM). As in classical FE methods, accuracy is obtained by
means of high-order polynomial approximation within an element rather than by wide
stencils as in the case of FVM. Similar to FVM, the physics of wave propagation is, how-
ever, accounted for by solving the Riemann problems that arise from the discontinuous
representation of the solution at element interfaces.

DG methods are indeed a natural choice for solving hyperbolic equations, such as
the compressible Euler equations. However, the DG formulation is far less certain and
advantageous for diffusion equations such as the compressible Navier-Stokes equations,
where viscous and heat fluxes exist and require the evaluation of the solution derivatives
at the interfaces. Taking a simple arithmetic mean of the solution derivatives from the
left and right is inconsistent, because it does not take into account a possible jump of
the solutions. Thus, how to appropriately address this issue becomes one of the core
challenges for the practice of DG methods for real applications.

The first attempt at using DGM to solve elliptic and parabolic problems can be tracked
back to the late 1970s and early 1980s when an interior penalty (IP) method was indepen-
dently proposed and studied in [20, 21]. In the IP method, a viscous flux is obtained
through the average of the left and right state and then penalizing with a penalty term
which includes the jump of the solution at each cell interface. The IP method with d-
ifferent stabilization terms was further analyzed for the two dimensional compressible
Navier-Stokes equations by Hartmann et al. [22, 23], which led to a new symmetric IP
(SIP) method. Inspired by the great success of the DGM for a first-order system, a natural
choice to solve a second-order system is to convert it into a first-order system by intro-
ducing additional variables, and then to apply a DG method directly to the first-order
system. Based on different choices of numerical flux at the cell interface, there are mainly
two kinds of approaches: one is the first Bassi-Rebay (BR1) scheme [18], and the other
is the so-called local discontinuous Galerkin (LDG) method [15]. A variation of a LDG
method, termed compact DG (CDG) method [17], was later developed by Peraire and
Persson to overcome the issue that LDG method is not compact when applied to mul-
tidimensional problems. For the same reason, Bassi and Rebay introduced the second
Bassi and Rebay scheme (BR2) based on BR1 scheme in order to maintain the compact-
ness and stability for the pure diffusion problems [14]. In practice, the auxiliary vari-
ables in both BR2 scheme and CDG method are usually eliminated by introducing the
so-called local and global lifting operator. From the finite volume community, van Leer
et al. [6, 7] proposed a recovery-based DG (RDG) method for diffusion equations using
the recovery principle, that recovers a smooth continuous solution that in the weak sense
is indistinguishable from the discontinuous discrete solution. Similarly, Luo et al. [4, 5]
developed a reconstructed DG (rDG) method for the compressible Navier-Stokes equa-
tions on arbitrary grids, where a smooth continuous solution is reconstructed at each cell
interface from the discontinuous discrete solution and the diffusive fluxes are then ob-
tained based on the smooth reconstructed solution. Besides, a kind of hybridizable DG
(HDG) discretization was recently introduced for the solution of convection-diffusion e-
quations [24]. For an uniform analysis and comparison among several of the methods


