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Abstract. In this paper, we consider the mixed finite element method (MFEM) of the
elasticity problem in two and three dimensions (2D and 3D). We develop a new resid-
ual based stabilization method to overcome the inf-sup difficulty, and use Langrange
elements to approximate the stress and displacement. The new method is uncondi-
tionally stable, and its stability can be obtained directly from Céa’s lemma. Optimal
error estimates for the H1-norm of the displacement and H(div)-norm of the stress
can be obtained at the same time. Numerical results show the excellent stability and
accuracy of the new method.
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1 Introduction

In this paper, we consider the MFEM of the elasticity problem based on the Hellinger-
Reissner variational principle. As is known to all, this method requires the pairs of the
finite element space satisfy the so-called inf-sup condition. Since the stress tensor re-
quires symmetry, it is difficult to construct the stable mixed finite elements (MFEs). Some
early works employed composite elements [1], or imposed the symmetry of stress tensor
weakly [2–6]. Until 2002, Arnold and Winther proposed the first family of stable MFEs
with respect to triangular meshes which used polynomial shape functions to approxi-
mate the stress and displacement [7], of which the simplified lowest order element has
21 degrees of freedom for the stress and 3 for the displacement (21 plus 3 DOFs), and

∗Corresponding author.
Emails: lyminghao@126.com (M. H. Li), shi dy@zzu.edu.cn (D. Y. Shi), ydai@tongji.edu.cn (Y. Dai)

http://www.global-sci.org/aamm 100 c©2018 Global Science Press



M. H. Li, D. Y. Shi and Y. Dai / Adv. Appl. Math. Mech., 10 (2018), pp. 100-113 101

optimal order error estimates were obtained for all variables. An analogous family of
conforming MFEs based on rectangular meshes were proposed in [8], involving 36 plus
3 DOFs for the simplified lowest order element. In [11], using the similar method of [7],
Arnold et al. presented some stable elements in 3D with respect to simplicial meshes,
and even the simplified lowest element has 156 plus 6 DOFs. In addition, some efficient
nonconforming MFEs for this problem also have been proposed. For example, two tri-
angular elements were presented in [9], and the simplified element has 12 plus 3 DOFs;
and a group of rectangular elements were introduced in [10], with the O(h) convergence
order in L2-norm for both the stress and the displacement, and the simplest element em-
ployed 12 plus 4 DOFs. Although many other stable elements were also constructed
based on the ideas of [7], (see [12–17]), these elements still have too many DOFs, and the
implementations are expensive [18], especially for the 3D case.

Recently, some new methods were proposed to construct stable elements for elasticity
problem. In [19], a family of nonconforming rectangular and cubic elements were con-
structed, and an explicit constructional proof of the discrete inf-sup condition was given.
The DOFs are 2 plus 1 in 1D, 7 plus 2 in 2D, and 15 plus 3 in 3D, and the error estimates
for all variables are optimal. In [20–22], some conforming rectangular and cubic elements
were presented, of which the lowest order elements have 8 plus 2 DOFs in 2D, and 18
plus 3 DOFs in 3D. In [23–25], some conforming elements on simplicial meshes were de-
veloped, and the lowest order elements only involve 18 plus 3 DOFs in 2D and 48 plus 6
in 3D. Compared with Arnold-Winther elements, these elements are more compact, and
have less DOFs.

On the other hand, some stabilized methods were also studied for the elasticity prob-
lem to overcome the inf-sup difficulty, such as Galerkin least-squares method [26], Brezzi-
Pitkäranta stabilization [27], variational multiscale method [28], projection stabilization
method [29, 30], edge stabilization method [31, 32], and least-squares method [33–36]. In
this paper, we propose a new residual based stabilization method for the elasticity prob-
lem. The equilibrium term is used to augment the coercivity, and the term derived from
the pure displacement equation is used to control the H1-norm of the displacement. The
method is consistent and unconditionally stable. The bilinear form is strongly coercive,
and its stability can be obtained directly from Céa’s lemma. The Language elements of
any order can be used to approximate stress and displacement, so the lowest elements
on simplicial meshes have 9 plus 6 DOFs in 2D, and 24 plus 12 DOFs in 3D, and the
numerical implementations are more easily. In addition, Optimal error estimates for the
H1-norm of the displacement and H(div)-norm of the stress can be obtained at the same
time.

The rest of this paper is organized as follows. In Section 2, we introduce the mixed
form of the elasticity problem and some notations used throughout the paper. In Section
3, we present the new stabilization scheme, prove the stability, and give the error analysis.
In Section 4, we implement two numerical examples to test the stability and convergence
rate of the new method. Throughout the paper we use C to denote a generic positive
constant whose value may change from place to place but that remains independent of


