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Abstract. We compare the diagonal form fast multipole method (FMM) with the tra-
ditional boundary element method (BEM) for a boundary integral equation (BIE) with
oscillatory Hankel kernels which arising in using hybrid numerical-asymptotic bound-
ary integral method to the two-dimensional (2D) scattering of a time-harmonic acous-
tic incident plane wave. The diagonal form FMM is a very efficient and popular algo-
rithm for the rapid solution of boundary value problems. However, we show that the
efficiency of the diagonal form FMM is greatly reduced for this kind of BIE. Numerical
examples are given to confirm the proposed results.
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1 Introduction

Various problems of mathematical physics and engineering can be described by partial
differential equations and these problems can often be reformulated as an equivalent
integral equation over the boundary [1, 2]. Especially, in the computation of 2D acoustic
scattering problems, the scattering of time-harmonic acoustic waves can be formulated
as the Helmholtz equation subject to appropriate boundary conditions [3–6],

∆u(x)+ω2u(x)=0, x∈R2\Ω̄, (1.1)

where ω is the wave number defined by ω= f̂ /c, in which f̂ is the angular frequency.
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The solution to Eq. (1.1) can be given as follows

u(x)=
∫

Γ
u(y)

∂G(x,y)
∂n(y)

−G(x,y)
∂u
∂n

(y)ds(y)+ui(x), x∈R2\Ω̄, (1.2)

with

G(x,y)=
i
4

H(1)
0 (ω|x−y|), (1.3)

where H(1)
0 denotes the Hankel function of the first kind and n(y) is the outward normal

vector at point y, Γ is the boundary of obstacle Ω, ui is an incident wave.
Letting point x approach the boundary leads to the following traditional BIE

c(x)u(x)=
∫

Γ
u(y)

∂G(x,y)
∂n(y)

−G(x,y)
∂u
∂n

(y)ds(y)+ui(x), x∈Γ, (1.4)

where constant c(x)=1/2 if Γ is smooth around point x.
The existence and uniqueness of a solution u ∈ C(Ω̄)∩C2(Ω) follow from classical

results, see [4,7]. For a 2D exterior acoustic problem, the Sommerfeld radiation condition

lim
r→∞

r1/2
(∂us

∂r
−iωus

)
=0, r := |x|,

on the scattered field us :=u−ui should be added to ensure that the solution of (1.1) is an
outgoing wave.

In the last few years, many numerical methods have been developed to solve the BIE
(1.4), among which BEM also referred to as the BIE method, has been widely used to
solve acoustic problems for many years. The BEM only needs to discretize the boundary
instead of the domain, which make the mesh generation faster. Unfortunately, the BEM
leads to systems of equations with dense and non-symmetrical coefficient matrices with
O(N2) elements need to be stored, where N being the number of degrees of freedom.
Solving the BEM systems of equations directly will need O(N3) arithmetic operations.
To overcome this drawback, Rokhlin and Greengard innovate FMM [2, 8, 9], which has
been widely used for solving large-scale engineering problems such as potential, elasto-
static, Stokes flow, and acoustic wave problems. However, the kernel in (1.3) is highly
oscillatory when ω�1 and (weakly) singular. Then the standard BEM or FMM may suf-
fer from difficulty for computation the solution of (1.4) since the computation of highly
oscillatory integrals by standard quadrature methods is exceedingly difficult and the cost
steeply increases with the frequency [10–12].

On the other hand, because of the rapid oscillation of solution (1.4) when ω is large,
the number of degrees of freedom grows at least linearly with respect to the wavenum-
ber ω for standard numerical schemes. Recently, the high-frequency asymptotics of the
solution was incorporated into the approximation space to reduce the computation cost.


