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Abstract. In this work, we present an immersed boundary-simplified gas kinetic
scheme for simulation of two-dimensional (2D) incompressible flows with curved and
moving boundaries. Specifically, a fractional step technique with predictor and correc-
tor processes is introduced to solve the governing equations. In the predictor step, the
macroscopic governing differential equations are solved on the fixed Eulerian meshes
by the recently developed simplified gas kinetic scheme (GKS). Compared to the con-
ventional GKS, the simplified GKS is simpler and more efficient. At the same time,
the simplified GKS inherits the advantage of good robustness of conventional GKS. In
the corrector step, the velocity correction is carried out on the Lagrangian points by
the implicit boundary condition-enforced immersed boundary method (IBM). Since it
strictly originates from the no-slip boundary condition, this approach can avoid com-
pletely the unphysical streamline penetration phenomenon. Several numerical experi-
ments show that the 2D incompressible flows with curved and moving boundaries can
be well simulated by the developed scheme.
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1 Introduction

Flow problems with curved and moving boundaries exist widely in practical engineer-
ing, such as flows in human heart [1–3], fish swimming [4–7], insect flight [8–10] and
freely falling objects [11–13]. In such problems, the large displacement and deformation
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of objects make the body-fitted mesh-based numerical methods be complicated and dif-
ficult for the application. This difficulty mainly arises from the tedious grid generation in
each time step. To overcome this defect, the immersed boundary method (IBM) [14–16]
has been developed and attracted increasing attention in recent years due to its simplic-
ity and flexibility. In IBM, the effect of the solid boundary on the flow field is depicted
by a restoring force and added to the momentum equation. Thus, the fluid field can be
solved on the fixed Cartesian (Eulerian) meshes without considering the presence of the
immersed object.

As mentioned above, there are two steps in the solution process of IBM. The first step
is to solve the standard Navier-Stokes equations on the fixed Eulerian meshes. Gas ki-
netic scheme (GKS) [17–19] is a popular solver to do so. In this method, the Navier-Stokes
equations are discretized by the finite volume method (FVM) and the numerical fluxes at
the cell interface are reconstructed physically by the local solution of Boltzmann equation.
Due to the strong foundation in physics, GKS performs very well in both incompressible
and compressible flows [20–23]. The conventional GKS [17, 18, 20, 21] usually applies the
Maxwellian function as the equilibrium state and utilizes the local integral solution of
Boltzmann equation to reconstruct the numerical fluxes. Due to discontinuity of conser-
vative variables and their derivatives at the cell interface, the local integral solution of
Boltzmann equation and the final expressions of numerical fluxes are very verbose and
complex as commented in the work of Tang [24]. For simulation of incompressible flows,
the conventional GKS can be simplified to some extent by assuming that the flow vari-
ables and their derivatives at the cell interface are changed smoothly [25–27]. However,
Chen et al. [28] recently found that this assumption may deteriorate the stability of the
conventional GKS at high Reynolds numbers. So, the discontinuity of flow variables at
the cell interface should be retained in order to improve the stability of incompressible
GKS.

To simplify the implementation and improve the computational efficiency of the con-
ventional GKS, a two-dimensional (2D) simplified GKS has been recently developed by
Shu and his coworkers [29–31]. In the method, the Maxwellian distribution function is
simplified as a circular function. Accordingly, the integrals for conservation forms of mo-
ments in the infinity domain of particle velocity space for the conventional GKS, which
are needed to recover the Navier-Stokes equations, can be reduced to those in the finite
domain (integrals along the circle) for the simplified GKS. Furthermore, in the simpli-
fied GKS, the numerical fluxes at the cell interface are reconstructed by the local asymp-
totic solution of Boltzmann equation. From the Chapman-Enskog analysis [32, 33], this
local solution can be finally expressed as the linear combination of equilibrium distri-
bution functions at the cell interface and on the circle. These simplifications make the
expressions of numerical fluxes for the simplified GKS be shortened correspondingly. In
addition, for simulation of incompressible flows, the computational efficiency of the sim-
plified GKS can be further improved [34, 35]. In particular, the integral domain along
the circle at cell interface can be approximately considered to be symmetric due to the
incompressible limit. As a result, the formulations of numerical fluxes can be given more


